تحلیل روند زمانی و مکانی تبخیر-تعرق مرجع در نیمه‌ غربی ایران طی دوره 1996 تا 2023

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هواشناسی کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 عضو هیئت علمی، گروه علوم ومهندسی آب، دانشگاه بوعلی سینا

10.22059/ijswr.2025.398578.669979

چکیده

تبخیر- تعرق از عوامل مهم در چرخه هیدرولوژی و از جمله عوامل تعیین کننده معادلات انرژی در سطح زمین و توازن آب می‌باشد. هدف این پژوهش، بررسی الگوی روندهای زمانی-مکانی تعرق مرجع پنمن–مانتیث فائو 56 (ET0) با آزمون ناپارامتری من-کندال و تخمین‌گر شیب سن در نیمه غربی ایران (شامل نیمه غربی و بخش‌هایی در مرکز) در بلند مدت (2023-1996) و دهه اخیر است. نتایج این پژوهش نشان از بیشترین ET0 در مناطق گرم و خشک جنوب و جنوب غرب کشور و کمترین مقدار آن در مناطق مرطوب شمالی و غرب کشور دارد. روندهای ET0 سالانه در بیش از 70% ایستگاه‌ها افزایشی معنادار بود، که بیشترین آن با 2/0 میلی‌متر در سال (در کاشان در مرکز) و کمترین آن در اردبیل و رشت به ترتیب با 02/0 و 03/0 میلی‌متر در سال مشاهده شد. در تمام فصل‌های سال، اکثر ایستگاه‌ها روند افزایشی ET0 را تجربه کردند، به طوری‌که بیشترین درصد ایستگاه‌ها در فصل‌های تابستان (78% ایستگاه‌ها) و زمستان (64% ایستگاه‌ها)، با بیشینه روند 49/0 میلی‌متر در تابستان (کاشان) بودند. روند منفی معنادار فقط در ایستگاه شیراز (04/0- میلی‌متر بر فصل) در فصل پاییز رخ داد. مقایسه میانگین سالانه ET0 در دوره اخیر نشان از افزایش محدوده تغییرات آن دارد، به طوری‌که بیشترین افزایش‌ در نواحی مرکزی ایران (حداکثر 78%)، در ارتفاعات زاگرس (حداکثر 48%) و حوضه دریاچه ارومیه رخ می‌دهد. روند افزایشی ET0 تحت تاثیر گرمایش جهانی منجر به تغییراتی در چرخه هیدرولوژی می‌شود، که شناخت آن در مدیریت منابع آب و برنامه‌ریزی‌های کشاورزی ضروری به نظر می‌رسد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatiotemporal Trend Analysis of Reference Evapotranspiration in the Western Half of Iran during 1996–2023

نویسندگان [English]

  • Atefeh Khoshbayan 1
  • Mehraneh Khodamorad Pour 2
  • vahid Varshavian 3
1 PhD student in Agricultural Meteorology, Bu-Ali Sina University, Hamedan, Iran
2 Water science and engineering department,, agriculture faculty, Bu-Ali Sina University, Hamedan,Iran
3 Assistant Professor, Department of Water Science and Engineering, Bu-Ali Sina University
چکیده [English]

Surface energy balance and water balance are determined by evapotranspiration-, a crucial part of the hydrological cycle. Using the FAO56 Penman–Monteith method, this study examines the spatiotemporal patterns of reference evapotranspiration (ET0) in Iran's semi-western region (including the western half and parts of the center) over a long period (1996–2023) and a recent decade. Trends were evaluated using Sen's slope estimator and Mann–Kendall nonparametric test. It is found that hot, arid regions in the south and southwest have the highest ET0, while humid northern and western regions have the lowest. There has been a significant increase in ET0 trends at over 70% of stations, with Kashan in the center having the largest slope at 0.20mm per year, while Ardabil and Rasht had the smallest slopes at 0.02–0.03mm per year. In all seasons, the majority of stations exhibit growing ET0 trends, with summer (78% of stations) and winter (64% of stations), and summer slopes of 0.49 mm (Kashan) being the highest. There was, however, a negative seasonal trend in ET0 in autumn only in Shiraz (-0.04 mm). Compared with a baseline period, the annual mean ET0 has increased in recent decades, with the largest increases occurring in central Iran (78%), the Zagros Mountains (48%), and the Lake Urmia basin. In light of the fact that ET0 is expected to increase in response to climate change, it is important for water resources management and agricultural planning to understand how these changes may affect the hydrological cycle.

کلیدواژه‌ها [English]

  • Climate change
  • Penman-Monteith FAO 56
  • Man-Kendall test
  • Sen’s slope estimator
  • West and central Ira

Introduction

As the link between the water and surface energy cycles, evapotranspiration is a crucial component of the hydrological cycle. As a result of global warming, evapotranspiration has been affected significantly, accelerating the hydrological cycle, particularly in semiarid and arid areas. Consequently, understanding the changes in evapotranspiration is essential and plays a critical role in studies related to climate change impacts, hydrology, and agriculture. Therefore, this study examines spatiotemporal changes in reference evapotranspiration (ET0) across semi-western Iran (covering the western half and parts of the center) over long periods of time (1996-2023), comparing its changes with the recent period (2011-2023).

Methodology

The aim of this research was to examine spatiotemporal changes in reference evapotranspiration (ET0) in the semi-western region of Iran. Using FAO-56's Penman-Monteith method, ET0 was calculated. Daily meteorological data were gathered from 25 weather stations in semi-western and central parts of the region for the calculation of monthly and annual ET0 values, including temperature, relative humidity, wind speed, and sunshine hour. The non-parametric Mann–Kendall test was used to determine significance (at two confidence levels: 99% and 95%), and Sen's slope estimator was used to measure slope of the trend. As part of the assessment of the effects of climate change on evapotranspiration dynamics, spatial analyses were conducted at different time scales—seasonal (spring, summer, autumn, and winter) and annual—to compare spatial heterogeneity and temporal changes between long-term means and those of recent decades.

Results and Discussion

 A long-term annual and seasonal mean of ET0 (1996-2023) indicates an increase in evapotranspiration from north to south of the study area. The southern regions exhibit the highest ET0, with a peak of 2419 mm in summer, whereas the humid coastal areas along the Caspian Sea and the northern highlands show the lowest levels, with less than 150 mm in winter. The varying topography of the Zagros Mountains, the Central Iranian Desert (Kavir), and the Khuzestan Plain likely contribute to these differences. Moreover, the high humidity and lower radiation levels in the northern coastal regions significantly contribute to the reduction of ET0. Also, the monthly ET0 trend for most stations (72% of stations) shows a positive trend in most months. On an annual basis, 70% of the stations studied experienced a significant upward trend, achieving a high confidence level of 99%. The greatest proportion of stations showing a significant increase occurred in summer (71%), followed by winter (64%), and then spring (60%). There was a significant increasing trend in Kashan (central Iran) of 0.49 mm during summer. In contrast, the Shiraz station exhibited a significant negative trend in ET0, with a decrease of 0.04 mm in autumn. This decline may be attributed to increased cloud cover and reduced energy available for evapotranspiration during that season. Overall, the temporal analysis of the trend lines indicates that the increasing trends demonstrate a steeper slope compared to the decreasing trends.

There has been a significant increase in the annual average ET0 in recent years, specifically from 2011 to 2023, compared to the baseline period of 1996 to 2010. The most notable increases have occurred in central regions, which saw an increase of 78%, and in northwest regions, which experienced a rise of 48%. In contrast, the southwestern coast registered the smallest increase at just 10%. The effects of climate change may lead to greater temperature rises in higher latitudes, potentially explaining the increase in ET0 observed in the highlands. On the southwestern coast, however, the high humidity has moderated the impact of rising temperatures, resulting in only a slight change in ET0.

Conclusion

The research confirms a marked and widespread acceleration in reference evapotranspiration across semi-western Iran during the period 1996–2023. This trend is most pronounced in the central and higher elevation northwestern regions, particularly in the most recent decade. The observed increase in atmospheric water demand poses a substantial threat to regional water resources, underscoring the imperative for prompt management strategies and the implementation of advanced irrigation practices.

Author Contributions

  1. Kh:Data preparation, Software, Formal Analysis, Validation, and writing-original draft preparation. M. Kh: Methodology, Conceptualization, Results Interpretation, Writing-review and editing, Final report review. Supervision. V. V: Writing-review and editing.

Data Availability Statements

Data available on request from the authors.

 

Acknowledgment

The authors would like to express their sincere gratitude to the Iran Meteorological Organization (IRIMO) for providing the meteorological data used in this study.

Ethical Consideration

The authors avoided data falsification, fabrication, plagiarism, and misconduct.

Conflict of Interest

The author declares no conflict of interest.

Aschale, T. M., Peres, D. J., Gullotta, A., Sciuto, G., & Cancelliere, A. (2023). Trend Analysis and Identification of the Meteorological Factors Influencing Reference Evapotranspiration. Water, 15(3), 470. https://doi.org/10.3390/w15030470
Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., 1998. Crop Evapotranspiration for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, NO. 56, Rome, Italy.
Allen, R.G., Pruitt, W.O., Wright, J.L., Howell, T.A., Ventura, F., Snyder, R., et al. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric.Water Manag. 81(2), 1-22.
Bouregaa, T. (2024). Spatiotemporal trends of reference evapotranspiration in Algeria. Theoretical and Applied Climatology, 155(1), 581-598.
Burn DH, Hesch NM (2007) Trends in evaporation for the Canadian Prairies. J Hydrol., 336(1), 61–73.
Chatrenour, M., Mirnaser, N., Davatgar, N., Moradimajd, N., Asadi Oskouei, E., Delsooz Khaki, B. (2023). Prediction of Potential Evaporation and Transpiration under Radiative Forcing Scenarios (Case Study: Tabriz). Journal of Climate Research, 54 (14), 2013-226. (In Persian).
Donohue RJ, McVicar TR, Roderick ML. 2010. Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386, 186–197.
Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol., 399(3), 422–433.
Dinpashoh, Y., & Allahverdipour, P. (2025). Monitoring and predicting changes in reference evapotranspiration in the Moghan Plain according to CMIP6 of IPCC. Environment and Water Engineering, 11(1), 47-56.
Eblaghian, A. , Akhondali, A. M. , Radmanesh, F. and Zarei, H. (2019). Trend Analysis of Temperature, Precipitation, and Relative Humidity Changes in Iran. Irrigation Sciences and Engineering, 42(3), 197-212. (In Persian).
Esmaeilpour, M. and Dinpazhooh, Y. (2012). Analyzing long term trend of potential evapotranspiration in the Southern parts of the Aras river basin. Geography and Environmental Planning, 23(3), 193-210. (In Persian).
Farooq, I., Shah, A. R., Salik, K. M., et al. (2021). Annual, seasonal and monthly trend analysis of temperature in Kazakhstan during 1970–2017 using non-parametric statistical methods and GIS technologies. Earth System Environment, 5(5), 575–595. https://doi.org/10.1007/s41748-021-00244-3
Goyal, R.K. (2004). Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agricultural Water Management, 69, 1-11.
Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. Retrieved from https://www.ipcc.ch/report/ar5/syr/
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/IPCC/AR6-9789291691647
Jhajharia, D., Dinpashoh, Y., Kahya, E., Singh, V. P., & Fakheri-Fard, A. (2012). Trends in reference evapotranspiration in the humid region of northeast India. Hydrological Processes, 26(3), 421–435. https://doi.org/10.1002/hyp.8140
Khodamorad Pour, M., Hessami, N., & Varshavian, V. (2025). From Dry to Temperate: How Climate Change Alters Growing Seasons?. International Journal of Climatology, 45(5), e8752. https://doi.org/10.1002/joc.8752
Khodamorad Pour, M. and Ghavi, L. (2021). The Evaluation of Evapotranspiration Product of MODIS with Penman-Montieth FAO 56 and Priestley-Taylor Evapotranspiration at the Different Climate Types of Iran. Journal of Water and Soil Conservation, 28(1), 201-218. (In Persian). https://doi.org/10.22069/jwsc.2021.18734.3425
Kousari MR, Zarch MAA, Ahani H, Hakimelahi H (2013) A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Climatic Change, 120(1–2), 277–298.
Khou, L., Ouessar, M., & Nakagawa, K. (2006). Evaluation of reference evapotranspiration estimation methods for semiarid regions. Agricultural Water Management, 80(1-3), 227-247.
 
Liang L, Li L, Liu Q (2010) Temporal variation of reference evapotrans piration during 1961–2005 in the Taoer River basin of Northeast China. Agric Forest Metorol 150(2), 298–306.
Liu, Y. J., Chen, J., & Pan, T. (2019). Analysis of changes in reference evapotranspiration, pan evaporation, and actual evapotranspiration and their influencing factors in the North China Plain during 1998–2005. Earth and Space Science, 6(8), 1366-1377.
Liu, Y., Guo, M., Li, J., Lyu, N., Zhang, J., & Zhang, B. (2025). Attribution analysis of trends in reference crop evapotranspiration in China. Journal of Geographical Sciences, 35(1), 3-16.
Liu, W., Zhang, B., & Han, S. (2020). Quantitative analysis of the impact of meteorological factors on reference evapotranspiration changes in Beijing, 1958-2017. Water (Switzerland), 12(8). https://doi.org/10.3390/w12082263
Mai, M., Wang, T., Han, Q., Jing, W., & Bai, Q. (2023). Comparison of environmental controls on daily actual evapotranspiration dynamics among different terrestrial ecosystems in China. Science of The Total Environment, 871, 162124.
Mirmousavi, H., Panahi, H., Akbari, H., & Akbarzadeh, Y. (2012). Calibration Methods to Estimate Reference Crop Evapotranspiration and Calculated Potential Water Requirements of Olive Plant in Kermanshah Province. Geography and Environmental Sustainability2(2), 45-64. (In Persian).
Mosaedi, A., Ghabaei Sough, M., Sadeghi, S. H., Mooshakhian, Y., & Bannayan, M. (2017). Sensitivity analysis of monthly reference crop evapotranspiration trends in Iran: a qualitative approach. Theoretical and Applied Climatology, 128(3–4), 857–873. https://doi.org/10.1007/s00704-016-1740-y
Naderianfar, E. Delbari, M. Afrasiab, P., & Kahkhamoghaddam, P. (2020). Comparing Different Processes for Mapping Reference Evapotranspiration in Iran. Irrigation Sciences and Engineering , 43(3), 17-31. (In Persian). https://doi.org/10.22067/jsw.2023.83328.1307
Nafarzadegan, A.R., Ahani, H., Singh, V.P., and Kherad, M. (2013). Parametric and non-parametric trend of evapotranspiration and its key influencing climatic variables (Case study: southern Iran). Ecopersia, 1(2), 123-144.
Ndiaye, P. M., Bodian, A., Diop, S. B., Diop, L., Dezetter, A., Ogilvie, A., & Djaman, K. (2024). Trend analysis of reference evapotranspiration and climate variables in the main hydrosystems of Senegal: Senegal, Gambia and Casamance River Basins. Proceedings of the International Association of Hydrological Sciences, 385, 305–314. https://doi.org/10.5194/piahs-385-305-2024
Parmar, S. H., & Tiwari, M. K. (2020). Determination of reference evapotranspiration (ET₀) using FAO-56 Penman–Monteith and comparison with Hargreaves and remote-sensing-based MOD16 data in middle Gujarat region, India. International Journal of Current Microbiology and Applied Sciences, 9(8), 3025–3034.
         Pour, S. H., Wahab, A. K. A., Shahid, S., & Ismail, Z. Bin. (2020). Changes in reference evapotranspiration and its driving factors in peninsular Malaysia. Atmospheric Research, 246. https://doi.org/10.1016/j.atmosres.2020.105096
         Rahman, M. N., Azim, S. A., Jannat, F. A., Rony, M. R. H., Ahmad, B., & Sarkar, M. A. R. (2023). Quantification of rainfall, temperature, and reference evapotranspiration trend and their interrelationship in sub-climatic zones of Bangladesh. Heliyon, 9(9).
         Rasouli, A. A., Babaeian, I., Ghaemi, H., & Zavvarreza, P. (2012). Time series analysis of pressure centers of synoptic patterns affecting seasonal precipitation in Iran, Journal of Geography and Development, 10(27), 77–88. (In Persian).
         Singh, A., Dhaloiya, A., Majumder, A., Duhan, D., Wratch, M. K., Malik, A., & Singh, S. (2025). Temporal trend analysis of average annual reference evapotranspiration using non-parametric methods in different agro-climatic zones of Indian Punjab. Modeling Earth Systems and Environment, 11(6), 387.
Sen, P. K. (1968). Estimates of regression coefficients based on Kendall’s tau. J Am Stat Assoc, 63, 1379–1389.
 
Tabari, H., Aeini, A., Talaee, P. H., & Some'e, B. S. (2012). Spatial distribution and temporal variation of reference evapotranspiration in arid and semi‐arid regions of Iran. Hydrological Processes, 26(4), 500-512.‏
Tabari, H., Marofi, S., Aeini, A., Talaee, P. H., & Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and forest meteorology, 151(2), 128-136.‏
Valipour, M., Bateni, S. M., Gholami Sefidkouhi, M. A., Raeini Sarjaz, M., & Singh, V. P. (2020). Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere, 11(10), 1081.
Wang, P; Yamanaka.T; Qiu, G. (2012). Causes of decreased reference evapotranspiration and pan evaporation in the Jinghe River catchment, northern China. Environmentalist, 32(1), 1–10.
Yahyavi Dizaj, A., Akbari Azirani, T., Khaledi, Sh., & Javan, Kh. (2023). Seasonal analysis of reference evapotranspiration and its sensitivity to meteorological elements in IRAN. Journal of Water and Soil, 37(4), 643-657. (In Persian). https://doi.org/10.22067/jsw.2023.83328.1307
Yoder, R. E., Odhiambo, L. O., & Wright, W. C. (2005). Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Applied Engineering in Agriculture, 21(2), 197–202.
Zhang, Y., Chiew, F. H. S., & Peña-Arancibia, J. L. (2016). Global variation of transpiration and soil evaporation and the role of their major climate drivers. Journal of Geophysical Research: Atmospheres, 121(6), 2122–2137.
Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., & Morgan, K. T. (2010). Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida, 8.