مدل‌سازی ویژگی‌های پرش هیدرولیکی نوع B و تحلیل تطبیقی با تمرکز بر نسبت اعماق ثانویه، اتلاف انرژی و تأثیر استقرار آستانه در شرایط آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آموزشی مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

2 گروه آموزشی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران

10.22059/ijswr.2025.402484.670008

چکیده

این پژوهش به بررسی جامع پرش هیدرولیکی نوع B در کانال مستطیلی با شرایط بدون آستانه و نصب آستانه‌های مختلف پرداخته است. آزمایش‌ها با کنترل عمق پایاب انجام شد تا پارامترهایی مانند نسبت عمق ثانویه به اولیه، طول ناحیه غلتان و اتلاف انرژی تحلیل شوند. نتایج نشان داد مدل‌های قبلی مبتنی بر اصل مومنتوم دارای میانگین درصد خطای مطلق MAPE) ) بین ۲۰ تا ۳۰ درصد بودند، در حالی که رابطه تجربی پیشنهادی Carollo et al. (2011)  با MAPE کمتر از ۵ درصد عملکرد بهتری داشت. در این مطالعه، رابطه جدیدی با MAPE حدود ۴ درصد برای پیش‌بینی نسبت عمق ثانویه معرفی شد. همچنین رابطه مستقیمی بین عدد فرود اولیه و نسبت عمق ثانویه مشاهده شد، به گونه‌ای که با افزایش عدد فرود از 8/7 به 13، نسبت عمق ثانویه از 12 به 5/23 افزایش یافت. اتلاف انرژی پرش نیز با افزایش عدد فرود بین ۶۰ تا ۸۰ درصد تغییر می‌کرد. مدل جدید در پیش‌بینی اتلاف انرژی دارایMAPE  7/1 درصد بود و بهتر از مدل‌های قدیمی مانند Hager (1992) بود. تحلیل طول ناحیه غلتان با یافته‌های پیشین منطبق بود. در این تحقیق، تأثیر نصب آستانه در پایین‌دست نیز بررسی شد؛ نصب آستانه در ناحیه‌ای نزدیک به محل تغییر شیب (بین 1/0 تا 5/0 برابر عرض کانال) موجب افزایش آشفتگی و نسبت عمق ثانویه می‌شود، اما اتلاف انرژی در این بازه کم بوده و کارایی مطلوبی ندارد. با جابجایی آستانه به موقعیت نسبی 4/1 تا 3 برابر عرض کانال، جریان به شرایط هیدرواستاتیک نزدیک شده و اتلاف انرژی در محدوده مطلوب ۶۵ تا ۸۰ درصد قرار گرفت. ارتفاع بهینه آستانه حدود ۱۰ سانتی‌متر تعیین شد. نصب آستانه در موقعیت نسبی 4/1 برابر عرض کانال منجر به شکل‌گیری حوضچه آرامش بهینه، اتلاف انرژی مناسب و بهینه‌سازی ابعاد سازه گردید. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of Type B hydraulic jump characteristics and comparative analysis focusing on sequent depth ratio, energy loss, and effect of sill installation under laboratory conditions

نویسندگان [English]

  • Marzieh Aliolad 1
  • Aliraza Vatankhah 2
1 Department of Irrigation and Reclamation Engineering, University of Tehran, Tehran, Iran.
2 Department of Irrigation and Reclamation Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

This study analyzes Type B hydraulic jumps in rectangular channels with and without downstream sills, proposing improved formulas for sequent depth and energy loss. Experiments were conducted under controlled tailwater depth conditions. Experimental results demonstrated that previous models based on the momentum principle had a Mean Absolute Percentage Error (MAPE) between 20% and 30%, whereas the empirical relationship proposed by Carollo et al. (2011) performed better, with a MAPE of less than 5%. A new relationship with a MAPE of about 4% was introduced for predicting the sequent depth ratio. As the Froude number increased from 7.8 to 13, the sequent depth ratio increased from 12 to 23.5. The energy loss of the jump varied between 60% and 80% with the increase in the Froude number. The new model demonstrated a MAPE of 1.7% in predicting energy loss, performing better than previous established models such as Hager (1992). The installation of a sill near the slope change area increased turbulence and the sequent depth ratio; however, the energy dissipation in this range was low and the performance was not optimal. With the sill located at 1.4 to 3 channel widths, the flow achieved hydrostatic conditions, resulting in the target energy loss of 65% to 80%. The optimal sill height was determined to be approximately 10 cm. Installing the sill at the relative position of 1.4 times the channel width resulted in the formation of an optimal stilling basin, suitable energy loss, and optimization of the structure's dimensions.

کلیدواژه‌ها [English]

  • Type B hydraulic jump
  • sequent depth ratio
  • momentum principle
  • energy dissipation
  • Froude number

Introduction

A novel momentum-based model is introduced for the prediction of B-type hydraulic jumps occurring on positive slopes in the presence of submerged downstream obstacles. Experimental data confirm that the model enhances predictive accuracy for both the sequent depth ratio and energy dissipation, overcoming key shortcomings of prior empirical methods.

Method

This study experimentally investigated B-type hydraulic jumps in a rectangular flume with a 45° inclined plate (choute) and downstream gate, measuring key flow parameters under varying conditions. A momentum balance method with a sill correction factor was employed to predict sequent depth ratios, integrating experimental and theoretical analyses to assess the impact of geometry and control structures on B-type jumps.

Results

This study evaluates models for Type B hydraulic jumps without sills. Traditional momentum-based models were inaccurate, with a 20–30% MAPE for sequent depth ratio. While Carollo et al.'s empirical model reduced this error to 5%, our proposed Traditional momentum-based formula, featuring an empirical coefficient (K=1), achieves a further improvement to 4.5% MAPE. Additionally, it precisely predicts energy dissipation rates of 60–80% with a MAPE of 1.7%. A secondary finding demonstrates that sill installation at specific heights and locations optimizes dissipation and stabilizes flow conditions.

Conclusions

This research developed a new momentum-based equation that accurately predicts both the sequent depth ratio and energy dissipation for Type B hydraulic jumps under varying tailwater and sill configurations, achieving MAPEs of approximately 4.5% and 1.7%, respectively. Findings indicate that higher initial Froude numbers raise the sequent depth ratio and energy dissipation, while optimal sill placement-between 1.4 and 2.2 from the slope change area-improves energy dissipation and reduces the size of stilling basins, promoting more efficient hydraulic design.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

 

Conflict of interest

The author declares no conflict of interest.

 

Beirami, M. K., & Chamani, M. R. (2006). Hydraulic Jumps in Sloping Channels: Sequent Depth Ratio. Journal of Hydraulic Engineering, 132(10), 1061-1068. https://doi.org/doi:10.1061/(ASCE)0733-9429(2006)132:10(1061)
Belanger, J. B. (1828). Essai sur la solution numerique de quelques problemes relatifs au mouvement permanent des eaux courantes; par m. J.-B. Belan(Gupta et al., 2013)ger. Chez Carilian-Goeury, libraire, des corps royaux des ponts et chaussees et ….
Bradley, J., & Peterka, A. (1957). Hydraulic design of stilling basins: Stilling basin with sloping apron (Basin V). Journal of the Hydraulics Division, 83(5), 1405-1401-1405-1432.
Carollo, F. G., Ferro, V., & Pampalone, V. (2011). Sequent Depth Ratio of a B-Jump. Journal of Hydraulic Engineering, 137(6), 651-658. https://doi.org/doi:10.1061/(ASCE)HY.1943-7900.0000342
Chow, V. T. (2009). Open-channel Hydraulics. Blackburn Press. https://books.google.com/books?id=JAj7swEACAAJ
Gupta, S. K., Mehta, R. C., & Dwivedi, V. K. (2013). Modeling of Relative Length and Relative Energy Loss of Free Hydraulic Jump in Horizontal Prismatic Channel. Procedia Engineering, 51, 529-537. https://doi.org/https://doi.org/10.1016/j.proeng.2013.01.075
Hager, W. H. (1988). B-jump in sloping channel. Journal of Hydraulic Research, 26(5), 539-558. https://doi.org/10.1080/00221688809499192
HAGER, W. H. (1992). Energy Dissipators and Hydraulic Jump. Springer Netherlands. https://books.google.com/books?id=TxLtWJwYY8oC
Hager, W. H., Basler, B., & Wanoschek, R. (1986). Incipient Jump Condition for Ventilated Sill Flow. Journal of Hydraulic Engineering, 112(10), 953–963. https://doi.org/doi:10.1061/(ASCE)0733-9429(1986)112:10(953)
Kawagoshi, N., & Hager, W. H. (1990). B-jump in sloping channel, II. Journal of Hydraulic Research, 28(4), 461-480. https://doi.org/10.1080/00221689009499060
Khanahmadi, E., Dehghani, A. A., Halaghi, M. M., Kordi, E., & Bahmanpouri, F. (2022). Investigating the characteristic of hydraulic T-jump on rough bed based on experimental and numerical modeling. Modeling Earth Systems and Environment, 8(4), 5695-5712.
Kindsvater, C. E. (1944). The Hydraulic Jump in Sloping Channels. Transactions of the American Society of Civil Engineers, 109(1), 1107-1120. https://doi.org/doi:10.1061/TACEAT.0005733
Macián-Pérez, J. F., García-Bartual, R., López-Jiménez, P. A., & Vallés-Morán, F. J. (2023). Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins. Applied Water Science, 13(10), 203.
Ohtsu, I., & Yasuda, Y. (1990). B-jump in sloping channel. Journal of Hydraulic Research, 28(1), 105-119.
Ohtsu, I., & Yasuda, Y. (1991). Hydraulic Jump in Sloping Channels. Journal of Hydraulic Engineering, 117(7), 905-921. https://doi.org/doi:10.1061/(ASCE)0733-9429(1991)117:7(905)
Rajaratnam, N. (1966). The hydraulic jump in sloping channels. Water and Energy International, 23(2), 137-149.
Singh, U. K., & Roy, P. (2023). Energy dissipation in hydraulic jumps using triple screen layers. Applied Water Science, 13(1), 17.
Murtaza, N., Pasha, G. A., Tanaka, N., Ghani, U., Anjum, N., & Iqbal, K. (2025). Analysis of Hydraulic Jump and Energy Dissipation in Flow Through Emergent Vegetation Under Varying Froude Numbers. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 49(3), 2759–2777. https://doi.org/10.1007/s40996-024-01571-x
Elshaarawy, M. K., & Hamed, A. K. (2025). Machine learning and interactive GUI for estimating roller length of hydraulic jumps. Neural Computing and Applications, 37(6), 4247–4276. https://doi.org/10.1007/s00521-024-10846-3
Rasoul, D., Hojjat, S., Amir, G., & John Patrick, A. (2024). Characteristics of hydraulic jump and energy dissipation in the downstream of stepped spillways with rough steps. Flow Measurement and Instrumentation, 96, 102506. https://doi.org/https://doi.org/10.1016/j.flowmeasinst.2023.102506