ارزیابی اثرات روش‌ آبیاری قطره‌ای زیرسطحی و روش جویچه‌ای بر مقادیر اجزاء فسفر معدنی خاک در کشت نیشکر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی، اهواز، ایران

2 گروه مهندسی محیط زیست، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه آزاد اسلامی، اهواز، ایران

10.22059/ijswr.2025.392448.669908

چکیده

این مطالعه با هدف مقایسه تأثیر آبیاری قطره‌ای زیرسطحی و آبیاری جویچه‌ای بر اجزاء شیمیایی فسفر در خاک در کشت نیشکر در شرکت حکیم فارابی خوزستان انجام شد. به این منظور نمونه‌برداری‌ خاک در دو مزرعه جداگانه با سیستم‌های آبیاری قطره‌ای زیرسطحی و آبیاری جویچه‌ای در زمان‌های 30 ، 90 ، 150  و 210 روز پس از کشت نیشکر و در دو عمق 15-0 و 30-15 سانتی‌متری انجام شد. مقایسه میانگین رشد نیشکر در بازه زمانی مورد بررسی به‌عنوان شاخصی از اثر نوع آبیاری در فعالیت ریشه گیاه و تولید زیست‌توده نشان داد که متوسط رشد نیشکر در روش آبیاری قطره‌ای زیرسطحی حدود 54 درصد بیشتر از روش آبیاری جویچه‌ای بود. در هر دو روش آبیاری، با گذشت زمان تا 210 روز روند کاهشی در همه اجزاء شیمیایی فسفر خاک قابل مشاهده بود. از اجزاء شیمیایی فسفر، Ca8-P ( 11 میلی‌گرم در کیلوگرم کاهش) و Ca10-P (7/10 میلی‌گرم در کیلوگرم کاهش) و به مقدار کمتر Fe-P  (8 میلی‌گرم در کیلوگرم کاهش) به‌ترتیب بیشترین کاهش را در آبیاری قطره‌ای زیرسطحی نشان دادند که می‌تواند نشان‌دهنده استفاده بیشتر فسفر از این اجزاء توسط نیشکر در آبیاری قطره‌ای زیرسطحی باشد در حالی‌که ترتیب کاهش در آبیاری جویچه‌ای به‌صورت Fe-P  (7/8 میلی‌گرم در کیلوگرم کاهش)، O-P  (7/7 میلی‌گرم در کیلوگرم کاهش) و Ca10-P (7 میلی‌گرم در کیلوگرم کاهش) می‌باشد. جزء شیمیایی Ca8-P به‌عنوان ترکیب شیمیایی فسفر در خاکهای آهکی که نقش کلیدی در تامین فسفر قابل استفاده گیاه و تبدیل شدن به Ca2-P دارد در روش آبیاری قطره‌ای زیرسطحی از ابتدا با غلظت 3/100 میلی‌گرم در کیلوگرم تا 3/89 میلی‌گرم در کیلوگرم تا آخرین زمان اندازه‌گیری کاهش یافت در حالی‌که در روش آبیاری جویچه‌ای این کاهش از 105 تا 102 میلی‌گرم در کیلوگرم مشاهده شد. ترتیب اجزاء شیمیایی فسفر در هر دو روش آبیاری از بیشترین تا کمترین درصد فراوانی به‌صورت Ca10-P (48.7%)> Ca8-P (37.2%)> Fe-P (6.7%)> O-P (4.2%)> Al-P (2.6%)> Ca2-P (0.5%) می‌باشد. بنابراین نوع روش آبیاری با توجه به اثراتی که در فعالیت ریشه گیاه و فعالیت میکروارگانیسم‌ها دارد در توزیع و مقدار اجزاء شیمیایی فسفر در خاک مؤثر است و خاک در آبیاری قطره‌ای زیرسطحی دارای کاهش بیشتری در اجزاء فسفر در مقایسه با آبیاری جویچه‌ای بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the effects of subsurface drip and furrow irrigation on the soil mineral phosphorus fractions in sugarcane cultivation

نویسندگان [English]

  • Jamal Saudi 1
  • Ali Afrous 2
  • Kamran Mohsenifar 1
  • Teimour Babaeinejad 1
  • Mehdi Asadi Lour 3
1 Department of Soil Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Department of Environmental Engineering, NT.C., Islamic Azad University, Tehran, Iran
3 Depatment of Water Engineering and Science, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
چکیده [English]

The purpose of this study is to compare of subsurface drip irrigation (SDI) and surface irrigation on the soil phosphorus fractionation in sugarcane cultivation in Hakim Farabi Company in Khuzestan province. For this purpose, soil sampling was carried out in two separate fields with SDI and surface irrigation systems at 30, 90, 150 and 210 days after planting and at two depths (0-15 and 15-30 cm). Average sugarcane growth, as an indicator of root activity and biomass production, in SDI was about 54% higher than the surface irrigation method. In both irrigation methods, all phosphorus fractions were decreased over time up to 210 days after planting. In SDI, Ca8-P (11 mg/kg decrease) and Ca10-P (10.7 mg/kg decrease) and a lesser extent Fe-P (8 mg/kg decrease) showed the greatest decrease respectively, which indicate greater use of phosphorus from these components by sugarcane, while the order of decrease in furrow irrigation was Fe-P (8.7 mg/kg decrease), O-P (7.7 mg/kg decrease), and Ca10-P (7 mg/kg decrease). The Ca8-P fraction, as a chemical fraction of phosphorus in calcareous soils that plays a major role in providing plant available phosphorus and converting to Ca2-P. In SDI, The Ca8-P fraction decreased from concentration of 100.3 mg/kg to 89.3 mg/kg over time (from T1 to T4), while in the furrow irrigation method this phosphorus fraction was changed from 105 to 102 mg/kg. The average relative proportions of various phosphorus fractions were ordered as Ca10-P (48.7%) > Ca8-P (37.2%) > Fe-P (6.7%) > O-P (4.2%) > Al-P (2.6%) > Ca2-P (0.5%). Therefore, the type of irrigation method is effective in the distribution and amount of phosphorus fractions in the soil, because it affects plant root activity and microorganism activity. This resulted that SDI had a greater reduction in phosphorus fractions compared to surface irrigation.

کلیدواژه‌ها [English]

  • Dicalcium phosphate
  • Octacalcium phosphate
  • Phosphorus fractions
  • Subsurface drip irrigation
  • Sugarcane

Introduction

Subsurface drip irrigation (SDI) involves the application of small amounts of water directly to the plant's root zone. In SDI, sufficient amounts of water and nutrients (based on required by the plant) are placed in the root zone. Indirect effects of SDI on plant nutrition include: 1) improving the moisture content in the root zone and consequently soil ventilation, 2) effect on the concentration of nutrients in the soil solution and the distance of diffusion to the root surface, and 3) changes in the availability of nutrients due to improved activity of microorganisms. Due to the differences in the amount of water used in various irrigation methods, distinct chemical phosphorus fractions various in the soil can be expected. Due to the lack of studies on the effects of SDI and surface irrigation methods on various phosphorus fractions in sugarcane cultivation, this study was conducted to investigate phosphorus fractions in the soil in the two mentioned irrigation methods.

Materials and Methods

For soil sampling during the plant growth period and subsequent analyses, a furrow was randomly selected from odd-numbered irrigation sections (1, 3, 5, 7, and 9) in the SDI field. Four stations were established along each furrow at predetermined intervals for soil sampling. A similar sampling strategy was employed in the control (furrow irrigation) field. Sampling was done at 30 (T1), 90 (T2), 150 (T3) and 210 (T4) days after planting. In order to phosphorus fractionation, soil samples were combined and subsamples were selected in triplicate. Soil samples were collected at horizontal distances of 20 cm from the drip irrigation pipes and at vertical depths of 0–15 cm, 15–30 cm.

In order to compare the two irrigation methods, germination and weekly growth were measured. The procedure of sequential extraction was performed according to Jiang and Gu (1989) who separated six phosphorus fractions: (1) dicalcium phosphate (Ca2-P); (2) Octacalcium phosphate (Ca8-P); (3) Al-phosphate (Al-P); (4) phosphorus associated with free iron oxide (Fe-P); (5) phosphorus occluded in crystalline Fe oxides (O-P); and (6) apatite (Ca10-P).

Results and Discussion

Average sugarcane growth, as an indicator of root activity and biomass production, in SDI was about 54% higher than the surface irrigation method. The sugarcane height measured at the end of experiment was 65.3 and 49.2 cm in SDI and surface irrigation methods, respectively. In both irrigation methods, all phosphorus fractions were decreased over time up to 210 days after planting. More difference of octacalcium phosphate fraction between two irrigation methods with plant growth could be an indicator of greater uptake of phosphorus by sugarcane from this fraction. In SDI, Ca8-P (11 mg/kg decrease) and Ca10-P (10.7 mg/kg decrease) and a lesser extent Fe-P (8 mg/kg decrease) showed the greatest decrease respectively, which indicate greater use of phosphorus from these components by sugarcane, while the order of decrease in furrow irrigation was Fe-P (8.7 mg/kg decrease), O-P (7.7 mg/kg decrease), and Ca10-P (7 mg/kg decrease). The average relative proportions of various phosphorus fractions were ordered as Ca10-P (48.7%) > Ca8-P (37.2%) > Fe-P (6.7%) > O-P (4.2%) > Al-P (2.6%) > Ca2-P (0.5%). In both irrigation methods, the labile and readily absorbable fraction of dicalcium phosphate (Ca2-P) constitutes less than one percent of total phosphorus fractions, while the highest percentage of abundance is related to Ca10-P, followed by octacalcium phosphate (Ca8-P). Although the irrigation method was effective in the amounts of some chemical fractions, it did not different in the percentage of these fractions, especially in the stable chemical forms of calcium phosphate. The main reason is the very high amounts of calcium phosphates in calcareous soils in arid and semi-arid region.

Conclusion

The irrigation method is effective in the distribution and amount of phosphorus fractions in the soil, because it affects plant root activity and microorganism activity. This resulted that SDI had a greater reduction in phosphorus fractions compared to surface irrigation.

Author contributions

J.S: designed and carried out the experimental work, collected and analyzed the data, conceptualization, writing – original draft, writing – review and editing. A.A and K.M: contributed to the design and interpretation of the results, writing – review and editing, revised the final version of the manuscript. T.B: reviewed the various versions of the article manuscript. M.A.L: contributed to the design experiment, Supervision. All authors have contributed to this scientific work to its publication.

Data Availability Statement

Not applicable.

 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct. This article does not contain any studies with human participants or animals.

Conflict of interest

The author declares no conflict of interest.

Abou Seeda, M. A., Hammad, S. A., Yassen, A. A., & Abou El-Nour, E. A. (2020). Evaluation and Optimization of Subsurface Irrigation (SDI) System: A review. Middle East Journal of Applied Sciences, 10(3), 508-534.
Adhami, E., Ronaghi, A., Karimian, N., & Molavi, R. (2012). Transformation of phosphorus in highly calcareous soils under field capacity and waterlogged conditions. Soil Research, 50, 249–255.
Bibi, S., Irshad, M., Mohiuddin, M., Sher, S., Tariq, M. A. U. R., & Ng, A. W. M. (2022). Distribution of Phosphorus Fractions in Orchard Soils in Relation to Soil Properties and Foliar P Contents. Sustainability, 14, 3966. https://doi.org/10.3390/su14073966
Bouyoucos, G. J. (1961). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54, 464–465.
Dharumarajan, S., & Singh, S. K. (2014). Variation of soil properties and phosphorus fractions in three cropping systems of lower indo-Gangetic alluvial plain. African Journal of Agricultural Research, 9(24), 1878-1886.
El-Nesr, M. N., Alazba, A. A., & Simunek, J. (2014). HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrigation Science, 32, 111–125.
Gonçalves, I. Z., Barbosa, E. A. A., Santos, L. N. S., Nazario, A. A., Feitosa, D. R. C., Tuta, N. F., & Matsura, E. E. (2019). Nutritional balance and production of sugarcane irrigated with treated wastewater through subsurface drip. Irrigation Science, 37(2), 207-217.
Jalali, M., & Ranjbar, F. (2010). Aging effects on phosphorus transformation rate and fractionation in some calcareous soils. Geoderma, 155, 101–106.
Jiang, B., & Gu, Y. (1989). A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertilizer Research, 20, 159-165.
Jun, W., Wen-Zhao, L., Han-Feng, M., & Ting-Hui, D. (2010). Inorganic phosphorus fractions and phosphorus availability in a calcareous soil receiving 21-year superphosphate application. Pedosphere, 20(3), 304–310.
Karimi, A., Zanganeh-Yusefabadi, E, & Safirzadeh, S. (2024). Comparison of availability and uptake of phosphorus and potassium in sugarcane under subsurface drip irrigation and furrow irrigation. Journal of Irrigation Sciences and Engineering, 47(3), 57-67. (In Persian) 
Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982) Lithium, sodium, and potassium. In AL Page, RH Miller, DR Keeney (Eds.), Methods of Soil Analysis, Chemical and Microbiological Properties (pp. 403–429). Madison, WI: SSSA, ASA.
Manikandan, M., & Thiyagarajan, G. (2021). Soil Moisture and Nutrient Patterns Under Subsurface Drip Irrigation for a Sustainable Sugarcane Initiative. In Fertigation Technologies for Micro Irrigated Crops. Apple Academic Press. 171-178.
Mahgoub, N., Mohamed, A., El Sikhary, E., & Ali, O. (2017). Roots and Nutrient Distribution under Drip Irrigation and Yield of Faba Bean and Onion. Open Journal of Soil Science, 7, 52-67.
Mohammed, A. T., & Irmak, S. (2022). Maize response to irrigation and nitrogen under center pivot, subsurface drip and furrow irrigation: Water productivity, basal evapotranspiration and yield response factors. Agricultural Water Management, 271, 107795.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon and organic matter. In AL Page, RH Miller, DR Keeney (Eds.), Methods of Soil Analysis, part III (pp. 961–1010). Madison, WI: SSSA, ASA.
Olsen, S. R., Cole, C. V., Watanabe, E. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture Circular, 939, 1-18.
Rhoades JD (1996) Salinity: Electerical conductivity and total dissolved solids. In AL Page, RH Miller, DR Keeney (Eds.), Methods of Soil Analysis, Chemical and Microbiological Properties. Madison, WI: SSSA, ASA.
Safirzadeh, S., Chorom, M., & Enayatizamir, N. (2019). Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.). Soil research, 57(4), 333-341.
Safirzadeh, S., Chorom, M., & Enayatizamir, N. (2021). Speciation and Fractionation of Phosphorus Affected by Enterobacter cloacae in the Rhizosphere of Sugarcane (Saccharum officinarum L.). Journal of Soil Science and Plant Nutrition, 21, 187–199.
Sheini-Dashtgol, A. (2020). Effects of different installation depths and space of pressure controlled emitters in subsurface drip irrigation on moisture distribution, water productivity and quantity and quality yield sugarcane in southern Khuzestan climate conditions. PhD Thesis Irrigation and Drainage. Faculity of water science. Shahid chamran University, Ahvaz. (In Persian)
Sheini-Dashtgol, A., Boroomand Nasab, S, & Naseri, A. A. (2020). Effects of subsurface drip irrigation on salinity dynamics, water productivity and ratoon sugarcane yield. Journal of Water and Soil, 34(4), 797-811. (In Persian)
 Sheini-Dashtgol, A., Hamoodi, M., Zanganeh Usef Abadi, E, & Zarei, S. (2024). Investigating the durability and efficiency of the subsurface drip irrigation system in the sugarcane fields in the south of Ahvaz. The 5th National Conference on Farm Water Management. (In Persian)
Shen, J., Li, R., Zhang, F., Fan, J., Tang, C., & Rengel, Z. (2004). Crop yields, soil fertility and phosphorus fractions in respose to long-term fertilization under the rice monoculture system on a calcareous soil. Field Crop Research, 86, 225-238.
Yin, Y., & Liang, C. H. (2013). Transformation of phosphorus fractions in paddy soil amended with pig manure. Journal of Soil Science and Plant Nutrition, 13(4), 809-818.
Wu, D., Xu, X., Chen, Y., Shao, H., Sokolowski, E., & Mi, G. (2019). Effect of different drip fertigation methods on maize yield, nutrient and water productivity in two-soils in Northeast China. Agricultural Water Management, 213, 200–211.
Zanganeh Usef Abadi, E. (2018). Study of the dynamic of moisture and salinity under subsurface drip irrigation management of sugarcane in south of Ahvaz. PhD Thesis Irrigation and Drainage. Faculity of water science. Shahid chamran University, Ahvaz. (In Persian)
Zhang, B., Fang, F., Guo, J., Chen, Y., Li, Z., & Guo, S. (2012). Phosphorus fractions and phosphate sorption-release characteristics relevant to the soil composition of water-level-fluctuating zone of Three Gorges Reservoir. Ecological Engineering, 40, 153-159.
Zhang, M., Li, C., Li, Y. C., & Harris, W. G. (2014). Phosphate minerals and solubility in native and agricultural calcareous soils. Geoderma, 232-234, 164-171.