پیش‌بینی ضریب دبی در سرریزهای جانبی نیم‌دایره‌ای با استفاده از روش‌های یادگیری ماشین مبتنی بر توابع کرنل: رویکردی مقایسه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

2 گروه مهندسى منابع آب، دانشکده مهندسى عمران، دانشگاه تبریز، تبریز، ایران

3 گروه مهندسی منابع آب، دانشکده مهندسی عمران، دانشگاه تبریز، تبریز، ایران

10.22059/ijswr.2025.399575.669986

چکیده

پیش‌بینی دقیق ضریب دبی در سرریزهای جانبی نیم‌دایره‌ای لبه‌تیز، به دلیل نقش کلیدی آن در تحلیل‌های هیدرولیکی، مدیریت بهینه جریان و طراحی ایمن سازه‌های آبی، از اهمیت بالایی برخوردار است. در این پژوهش، جهت ارتقاء دقت پیش‌بینی این ضریب از ترکیب روش ماشین بردار پشتیبان (SVM: Support Vector Machine) با دو الگوریتم بهینه‌سازی فرا ابتکاری، شامل الگوریتم بهینه‌سازی اسب (HOA: Horse Optimization Algorithm) و الگوریتم جستجوی خزندگان (RSA: Reptile Search Algorithm)، استفاده‌شده است. ابتدا پارامترهای بی‌بعد مؤثر بر ضریب دبی شناسایی‌شده و مدل‌های مختلف توسعه یافتند. مجموعه داده‌های آزمایشگاهی به‌صورت تصادفی به دو بخش آموزش (80 درصد) و تست (20 درصد) تقسیم شدند. نتایج نشان داد که هر دو مدل دقت بالایی در پیش‌بینی ضریب دبی دارند، اما مدل SVM-HOA در مرحله تست عملکرد بهتری نسبت به SVM-RSA ارائه داده است (0.887 NSE=، 0.025RMSE= و 0.899R2=). عملکرد برتر و نتایج دقیق‌تری ارائه می‌دهد. همچنین، آنالیز حساسیت نشان داد که نسبت عمق جریان روی تاج سرریز جانبی به قطر سرریز (h1/D) و نسبت ارتفاع تاج سرریز به عرض کانال (P/B) تأثیرگذارترین پارامترها در مدل‌سازی ضریب دبی هستند. نتایج این پژوهش مؤید آن است که مدل پیشنهادی مبتنی بر ترکیب SVM با الگوریتم HOA می‌تواند ابزاری قدرتمند برای پیش‌بینی دقیق رفتار هیدرولیکی سرریزهای جانبی نیم‌دایره‌ای در شرایط مختلف عملیاتی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Kernel-driven prediction of discharge coefficient in semi-circular side weirs: a comparative machine learning perspective

نویسندگان [English]

  • kiyoumars roushangar 1
  • Aydin Panahi 2
  • Arman Alirezazadeh Sadaghyani 3
1 Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
2 Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
3 Department of Water Resources Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Accurate prediction of the discharge coefficient in sharp-crested semi-circular side weirs is of high importance due to its critical role in hydraulic analyses, optimal flow management, and the safe design of water structures. In this study, to enhance the prediction accuracy of this coefficient, the Support Vector Machine (SVM) was integrated with two metaheuristic optimization algorithms: The Horse Optimization Algorithm (HOA) and the Reptile Search Algorithm (RSA). Initially, the dimensionless parameters influencing the discharge coefficient were identified, and several predictive models were developed. The experimental dataset was randomly split into training (80 percent) and testing (20 percent) subsets. Results demonstrated that both models exhibited high predictive accuracy; however, the SVM-HOA model delivered superior performance during the testing phase (NSE = 0.887, RMSE = 0.025, R2 = 0.899), yielding more precise outcomes. Sensitivity analysis further revealed that the ratio of upstream flow depth over the weir crest to the weir diameter (h1/D) and the ratio of weir crest height to channel width (P/B) were the most influential parameters in modeling the discharge coefficient. Overall, the findings confirm that the proposed SVM-HOA hybrid model provides a powerful tool for accurately predicting the hydraulic behavior of semi-circular side weirs under various operational conditions.

کلیدواژه‌ها [English]

  • Discharge coefficient
  • Machine learning
  • Meta-heuristic algorithms
  • Sensitivity analysis
  • Side weir

Introduction

Semi-circular side weirs are crucial hydraulic structures designed for diverting and regulating flow in open channel systems. These structures are widely applied in irrigation networks, stormwater drainage, and treatment facilities. One of the key parameters for evaluating the hydraulic performance of side weirs is the discharge coefficient (Cd), which plays a vital role in estimating flow profiles and managing water resources effectively. Although several empirical and theoretical models have been proposed for estimating Cd, their performance is often limited by specific experimental conditions and a lack of generalizability.

Recent advancements in soft computing and machine learning have provided powerful tools for capturing complex, nonlinear relationships in hydraulic phenomena. In this context, this study introduces and evaluates two novel hybrid models that combine Support Vector Machine (SVM) regression with Horse Optimization Algorithm (HOA) and Reptile Search Algorithm (RSA) to enhance the prediction accuracy of Cd in sharp-crested semi-circular side weirs.

Method

A total of 212 experimental data points were compiled from two previous studies under subcritical flow regimes. The predictive models were developed using key dimensionless input variables derived through Buckingham Pi theorem, including ratios such as h1/D, P/B, and Fr1. The data were randomly split into training (80 percent) and testing (20 percent) sets, and a 10-fold cross-validation approach was applied to minimize overfitting. SVM models were optimized using HOA and RSA algorithms, which aimed to find the best hyperparameters for the regression process by minimizing RMSE.

The HOA algorithm mimics the social behavior of horse herds in search and exploration, while RSA draws inspiration from crocodile hunting behavior. Each optimization algorithm was applied independently to train the SVM model, and their performance was compared based on three key statistical indices: R², RMSE, and NSE.

Results

The results show that the SVM-HOA model consistently outperformed SVM-RSA in most scenarios. The best performance was observed in scenario SC5, where SVM-HOA achieved NSE = 0.887, RMSE = 0.025, and R2 = 0.899, indicating a high level of prediction accuracy. Sensitivity analysis revealed that the ratio of upstream flow depth over the weir crest to the weir diameter (h1/D) and the ratio of weir crest height to channel width (P/B) were the most influential parameters for accurate prediction. The Taylor diagram and comparative scatter plots further confirmed the superiority of SVM-HOA in both training and testing phases.

Conclusions

This study demonstrates that hybrid SVM models enhanced with HOA and RSA significantly improve the prediction of discharge coefficients in semi-circular side weirs. The SVM-HOA model, in particular, outperformed its counterpart across all evaluation metrics, showcasing better generalization and resistance to overfitting. Given the complexity and nonlinearity of hydraulic flow behavior, such intelligent models can serve as reliable tools in practical hydraulic engineering. Future work should explore the applicability of these models under submerged and supercritical flow conditions and investigate other advanced AI algorithms for further refinement.

Author Contributions

Kiomars Roshangar: Project management, study design, and result interpretation. Aydin Panahi: Methodology development, data analysis, and manuscript drafting. Arman Alizadeh Sadeghiani: Data collection and manuscript review. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data used in this study are available from the corresponding author upon request.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct

Conflict of Interest

The authors declare no conflicts of interest related to this work.

Abdollahi, A., Kabiri-Samani, A., Asghari, K., Atoof, H., & Bagheri, S. (2017). Numerical modeling of flow field around the labyrinth side-weirs in the presence of guide vanes. ISH Journal of Hydraulic Engineering, 23(1), 71–79. DOI: https://doi.org/10.1080/09715010.2016.1239555
Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z. W., & Gandomi, A. H. (2022). Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Systems with Applications, 191, 116158. DOI: https://doi.org/10.1016/j.eswa.2021.116158
Azamathulla, H. M., Haghiabi, A. H., & Parsaie, A. (2016). Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology: Water Supply, 16(4), 1002–1016. DOI: https://doi.org/10.2166/ws.2016.014
Azimi, H., Bonakdari, H., & Ebtehaj, I. (2017). Sensitivity analysis of the factors affecting the discharge capacity of side weirs in trapezoidal channels using extreme learning machines. Flow Measurement and Instrumentation, 54, 216–223. DOI: https://doi.org/10.1016/j.flowmeasinst.2017.02.005
Azimi, H., Shabanlou, S., & Salimi, M. S. (2014). Free surface and velocity field in a circular channel along the side weir in supercritical flow conditions. Flow Measurement and Instrumentation, 38, 108–115. DOI: https://doi.org/10.1016/j.flowmeasinst.2014.05.013
Biggiero, V., Longobardi, D., & Pianese, D. (1994). Indagine sperimentale su sfioratori laterali a soglia bassa. Giornale Del Genio Civile, 132(7-8–9), 183–199 [In Italian].
Bilhan, O., Emiroglu, M. E., & Kisi, O. (2010). Application of two different neural network techniques to lateral outflow over rectangular side weirs located on a straight channel. Advances in Engineering Software, 41(6), 831–837. DOI: https://doi.org/10.1016/j.advengsoft.2010.03.001
Borghei, S. M., Jalili, M. R., & Ghodsian, M. (1999). Discharge coefficient for sharp-crested side weir in subcritical flow. Journal of Hydraulic Engineering, 125(10), 1051–1056. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1999)125:10(1051)
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. DOI: https://doi.org/10.1007/Bf00994018
Daneshfaraz, R., Norouzi, R., Patrick Abraham, J., Ebadzadeh, P., Akhondi, B., & Abar, M. (2023). Determination of flow characteristics over sharp-crested triangular plan form weirs using numerical simulation. Water Science, 37(1), 211-224. DOI: https://doi.org/10.1080/23570008.2023.2236384
Ebtehaj, I., Bonakdari, H., Zaji, A. H., Azimi, H., & Khoshbin, F. (2015). GMDH-type neural network approach for modeling the discharge coefficient of rectangular sharp-crested side weirs. Engineering Science and Technology, an International Journal, 18(4), 746–757. DOI: https://doi.org/10.1016/j.jestch.2015.04.012
El-Khashab, A., & Smith, K. V. H. (1976). Experimental investigation of flow over side weirs. Journal of the Hydraulics Division, 102(9), 1255–1268. DOI: https://doi.org/10.1061/JYCEAJ.0004610
Fattahi, H., & Babanouri, N. (2017). Applying optimized support vector regression models for prediction of tunnel boring machine performance. Geotechnical and Geological Engineering35(5), 2205-2217. DOI: https://doi.org/10.1007/s10706-017-0238-4
Gardiner, C. W. (1985). Handbook of stochastic methods for physics, chemistry and the natural sciences. Springer Series in Synergetics.
Gharib, R., Heydari, M., Kardar, S., & Shabanlou, S. (2020). Simulation of discharge coefficient of side weirs placed on convergent canals using modern self-adaptive extreme learning machine. Applied Water Science, 10, 1–11. DOI: https://doi.org/10.1007/s13201-019-1136-0
Granata, F., Gargano, R., & Santopietro, S. (2016). A flow field characterization in a circular channel along a side weir. Flow Measurement and Instrumentation, 52, 92–100. DOI: https://doi.org/10.1016/j.flowmeasinst.2016.09.011
Hager, W. H. (1994). Supercritical Flow in Circular‐Shaped Side Weir. Journal of Irrigation and Drainage Engineering, 120(1), 1–12. DOI: https://doi.org/10.1061/(ASCE)0733-9437(1994)120:1(1)
Haghshenas, V, & Vatankhah, A. R. (2021). Discharge equation of semi-circular side weirs: An experimental study. Flow Measurement and Instrumentation, 81, 102041. DOI: https://doi.org/10.1016/j.flowmeasinst.2021.102041
Haghshenas, Vahid, & Vatankhah, A. (2015). Comparison of Different Discharge Estimation Methods for Sharp-Crested Semi-Circular Side Weir under Subcritical Flow Regimes. Iranian Journal of Soil and Water Research, 46(4), 663–671. DOI: https://doi.org/10.22059/ijswr.2015.56790 (In Persian).
Hamel, L. H. (2011). Knowledge discovery with support vector machines. John Wiley & Sons.
Ismael, A. A., Suleiman, S. J., Al-Nima, R. R. O., & Al-Ansari, N. (2021). Predicting the discharge coefficient of oblique cylindrical weir using neural network techniques. Arabian Journal of Geosciences14, 1-8. DOI: https://doi.org/10.1007/s12517-021-07911-9
Li, S., Shen, G., Parsaie, A., Li, G., & Cao, D. (2024). Discharge modeling and characteristic analysis of semi-circular side weir based on the soft computing method. Journal of Hydroinformatics, 26(1), 175–188. DOI: https://doi.org/10.2166/hydro.2023.268
Majedi-Asl, M., fuladipanah,  mehdi, daneshfaraz, R., & jannat,  khalil. (2022). assessment of the effect of the hydraulic and geometric parameters on the discharge coefficient of the labyrinth weirs Using the experimental method and intelligent algorithms. Water Resources Engineering, 15(52), 73–92. DOI: https://doi.org/10.30495/wej.2022.28461.2323 (In Persian).
MiarNaeimi, F., Azizyan, G., & Rashki, M. (2021). Horse herd optimization algorithm: A nature-inspired algorithm for high-dimensional optimization problems. Knowledge-Based Systems, 213, 106711. DOI: https://doi.org/10.1016/j.knosys.2020.106711
Mohan, M. (1987). Side weir discharge coefficient. Roorkee Univ Roorkee, India.
Nourani, B., Arvanaghi, H., Pourhosseini, F. A., Javidnia, M., & Abraham, J. (2023). Enhanced support vector machine with particle swarm optimization and genetic algorithm for estimating discharge coefficients of circular-crested oblique weirs. Iranian Journal of Science and Technology, Transactions of Civil Engineering47(5), 3185-3198. DOI: https://doi.org/10.1007/s40996-023-01110-0
Pandey, N. P. (1985). Flow characteristics of non-rectangular side weirs. Roorkee Univ Roorkee, India.
Parsaie, A., Haghiabi, A. H., Saneie, M., & Torabi, H. (2017). Predication of discharge coefficient of cylindrical weir-gate using adaptive neuro fuzzy inference systems (ANFIS). Frontiers of Structural and Civil Engineering11, 111-122. DOI: https://doi.org/10.1007/s11709-016-0354-x
Roushangar, K., Khoshkanar, R., & Shiri, J. (2016). Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods. ISH Journal of Hydraulic Engineering, 22(3), 254–261. DOI: https://doi.org/10.1080/09715010.2016.1177740
Roushangar, K., Saadatjoo, R., Abbaszadeh, H., & Panahi, A. (2024a). Estimation of air concentration in chute spillway using metamodel methods. Iranian Journal of Soil and Water Research, 55(4), 601–613. DOI: https://doi.org/10.22059/ijswr.2024.370643.669640 (In Persian).
Roushangar, K. , Abbaszadeh, H. , Saadatjoo, R. and Panahi, A. (2024b). Prediction of Air Concentration in Stepped Spillways Using Data-Oriented Methods. Environment and Water Engineering, 11(3), 316-325. DOI: https://doi.org/10.22034/ewe.2024.433409.1905
Shao, Y., & Lunetta, R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS Journal of Photogrammetry and Remote Sensing70, 78-87. DOI: https://doi.org/10.1016/j.isprsjprs.2012.04.001