پایش تغییرات دینامیکی پارامترهای کیفیت‌آب مخزن سدها با سنجش‌از‌دور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مهندسی آب دانشکده آب و خاک دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه مهندسی آب، دانشکده مهندسی آب و خاک، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22059/ijswr.2025.400147.669993

چکیده

پایش مداوم کیفیت‌آب مخازن سدها، به‌ویژه در مواجهه با تغییرات اقلیمی و فشارهای انسانی، برای مدیریت بهینه منابع آب ضروری است. در این پژوهش، از تصاویر ماهواره‌ Landsat8 به‌منظور مدل‌سازی و پهنه‌بندی دو پارامتر کلیدی کیفیت‌آب شامل کلروفیل‌آ و کدورت مخزن سد Choke Canyon در ایالت تگزاس‌آمریکا استفاده شد. به‌منظور تخمین دقیق مقادیر این پارامترها، روش رگرسیون خطی چندمتغیره بر مبنای داده‌های میدانی برداشت‌شده از 19 نقطه در سطح مخزن توسعه یافت. نتایج مدل‌سازی نشان‌داد که روابط استخراج‌شده به‌ترتیب با ضریب‌تعیین و RMSE، 96/  0و 09/0 برای کلروفیل‌آ و 84/0 و 1/0 برای کدورت در زمان‌مرجع، عملکرد قابل قبولی دارند. همچنین به‌منظور کاهش خطاهای ناشی از تغییرات جوی‌و‌شرایط محیطی در اثر گذشت‌زمان و پیش‌بینی مقادیر پارامترهای کیفی آب مخزن برای زمان آینده، از پارامتر اصلاحی ویژه (SCP) استفاده‌شد که با اعمال آن، مقدار خطای  RMSE در زمان-جدید برای تخمین کلروفیل‌آ از 15/0 به 09/0 و برای کدورت از 14/0 به 05/0 کاهش یافت. تحلیل نتایج ترسیم پهنه‌بندی پارامترهای کیفی آب نشان‌داند که بیش‌ترین غلظت کلروفیل‌آ عمدتاً در نواحی غربی، دیواره‌های کناری و مناطق کم‌عمق مخزن، و بیش‌ترین غلظت کدورت در نواحی میانی و عمیق مخزن مشاهده می‌شود که این الگوها به عوامل محیطی همچون عمق آب، جریان‌های ورودی به مخزن، و توپوگرافی مخزن وابسته می‌باشند. در مجموع، یافته‌های این پژوهش نشان‌داد که ترکیب تصاویر ماهواره‌ای، مدل‌سازی آماری و اصلاحات‌طیفی می‌توانند به‌عنوان روشی کارآمد برای پایش کم‌هزینه و گسترده کیفیت آب دریاچه‌ها و مخازن سدها مورد استفاده قرار گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Monitoring dynamic changes in water quality parameters of dam reservoirs using remote sensing

نویسندگان [English]

  • Abdolreza Zahiri 1
  • Hamed Feiz Abady 2
1 Associated Professor, Dep. of Water Engineering, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Golestan.
2 Water Engineerin Department, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
چکیده [English]

Continuous monitoring of water quality in dam reservoirs, especially under the influence of climate change and anthropogenic pressures, is vital for sustainable water resource management. This study utilized Landsat 8 satellite imagery to model and map two key water quality parameters chlorophyll-a and turbidity in the Choke Canyon Reservoir, Texas, USA. A multivariate linearlinear regression model was developed based on in-situ data collected from 19 points across the reservoir surface. The results showed that the developed models performed well at the reference time, with R² and RMSE values of 0.96 and 0.09 for chlorophyll-a, and 0.84 and 0.10 for turbidity, respectively. To address temporal changes and environmental variability, a Spectral Correction Parameter (SCP) was introduced, which improved model accuracy for future time predictions. The RMSE for chlorophyll-a estimation decreased from 0.15 to 0.09, and for turbidity from 0.14 to 0.05 after applying SCP. Spatial analysis revealed that higher chlorophyll-a concentrations were mainly found in the western, shallow, and nearshore areas of the reservoir, while higher turbidity levels were concentrated in the central and deeper zones. These spatial patterns were closely related to environmental factors such as water depth, inflow currents, and reservoir topography. Overall, the integration of remote sensing data, statistical modeling, and spectral correction techniques proved effective for low-cost, large-scale monitoring of water quality in reservoirs.

کلیدواژه‌ها [English]

  • Chlorophyll-a
  • Modeling
  • Reservoir
  • Satellite imagery
  • Turbidity

Introduction

Monitoring of water quality in dam reservoirs is of significant importance for the sustainable management of water resources, especially under conditions of increased urbanization, agricultural expansion, and climate change. Traditional field-based monitoring methods are often time-consuming, costly, and spatially limited. In recent years, remote sensing has emerged as an effective alternative for the estimation of key water quality parameters over large spatial and temporal scales. This study aims to estimate and analyze the spatial distribution of two important optical water quality parameters chlorophyll-a (Chl-a) and turbidity in the Choke Canyon Reservoir, located in Texas, USA, using Landsat 8 satellite imagery.

Materials and Method

In-situ water quality data, including chlorophyll-a concentration and turbidity (NTU), were collected on January 15, 2023, from 19 sampling points across the reservoir. Satellite data corresponding to the same date were acquired from the Landsat 8 OLI sensor. A Modified Normalized Difference Water Index (MNDWI) was applied to extract the water body extent. Then, multivariate linearlinear regression models were developed using spectral reflectance values (mainly Bands 4 and 5) as independent variables to estimate chlorophyll-a and turbidity. To address the atmospheric and environmental variability in satellite reflectance, a Specific Correction Parameter (SCP) was introduced and applied to Landsat imagery from a second date (July 18, 2023) for model validation and temporal comparison.

Results and Discussion

The regression models achieved strong predictive performance during the reference period, with R² values of 0.96 for chlorophyll-a and 0.84 for turbidity, and corresponding RMSE values of 0.09 mg/m³ and 0.10 NTU, respectively. After applying the SCP correction for July 18, 2023, the model performance improved significantly, with RMSE reduced to 0.09 for Chl-a and 0.05 for turbidity, and R² values around 0.93 for both parameters. Spatial mapping revealed that high chlorophyll-a concentrations were mostly found in the northern shallow regions of the reservoir, likely due to nutrient accumulation and algal growth. In contrast, high turbidity levels were observed in the southern and central areas, possibly caused by sediment resuspension and inflow disturbances. These findings align well with similar studies using remote sensing for water quality monitoring and demonstrate the importance of incorporating atmospheric correction in multi-temporal analyses.

Conclusion

This study demonstrated that the integration of medium-resolution satellite imagery, linearlinear regression modeling, and specific spectral correction can provide an efficient, low-cost, and reliable approach for estimating and mapping key water quality parameters in reservoir systems. The methodology is particularly valuable for regions with limited field data and can be generalized for use in other similar environments. The use of SCP enhanced the comparability of multi-temporal satellite observations, making it a practical tool for dynamic water quality assessment and decision support in water resource management.

Author Contributions:

Abdolreza Zahiri: Supervision, review and editing, project administration, funding acquisition.
Hamed Feizabady: Conceptualization, methodology, investigation, data curation, analysis, visualization, writing—original draft.

All authors have read and approved the final manuscript.

Data Availability Statement:

The data supporting the findings of this study are available from the corresponding author, Hamed Feizabady, upon reasonable request, and are also accessible through the database referenced in the manuscript.

Acknowledgements:

The authors would like to thank Gorgan University of Agricultural Sciences and Natural Resources for their support, and the reviewers for their valuable comments and suggestions.

Ethical considerations:

The authors confirm that the study was conducted in accordance with ethical principles, and no data fabrication, falsification, plagiarism, or misconduct occurred.

Conflict of Interest:

The authors declare no conflict of interest.

Aminot, A., & Rey, F. (2000). Standard procedure for the determination of chlorophyll a by spectroscopic methods. International Council for the Exploration of the Sea, 112(25), 1-2.
Assar, W. (2024). Retrieval of Chlorophyll-a and vegetation indices Using Sentinel-2 MSI Imagery in El-Burullus Lake, Egypt. SVU-International Journal of Engineering Sciences and Applications, 5(1), 79-88.
Bielski, A., & Toś, C. (2022). Remote sensing of the water quality parameters for a shallow dam reservoir. Applied Sciences, 12(13), 6734.
Bonansea, M., Ledesma, M., Rodriguez, C., & Pinotti, L. (2019). Using new remote sensing satellites for assessing water quality in a reservoir. Hydrological sciences journal, 64(1), 34-44.
Chathuranika, I. M., Sachinthanie, E., Zam, P., Gunathilake, M. B., Denkar, D., Muttil, N., ... & Rathnayake, U. (2023). Assessing the water quality and status of water resources in urban and rural areas of Bhutan. Journal of Hazardous Materials Advances, 12, 100377.
Deng, Y., Zhang, Y., Pan, D., Yang, S. X., & Gharabaghi, B. (2024). Review of recent advances in remote sensing and machine learning methods for lake water quality management. Remote Sensing, 16(22), 4196
Doosti, N., Malian, A., & Arabi, M. (2018). Monitoring and prediction of water quality using statistical data mining based on limited data (Case study: Golabar Reservoir). Hydrophysics, 4(1), 105–118. [In Persian]
Feizabady, H., Ghorbani, K., & Zahiri, R. (2024). Monitoring time series of reservoir water surface area changes using remote sensing approaches. Journal of Water and Soil Conservation.
Gleick PH. Water in crisis. New York: Oxford University Press; 1993.
Jakovljevic, G., Álvarez-Taboada, F., & Govedarica, M. (2023). Long-term monitoring of inland water quality parameters using Landsat time-series and back-propagated ANN: Assessment and usability in a real-case scenario. Remote Sensing, 16(1), 68.
Jaywant, S. A., & Arif, K. M. (2024). Remote sensing techniques for water quality monitoring: a review. Sensors, 24(24), 8041.
Kowe, P., Ncube, E., Magidi, J., Ndambuki, J. M., Rwasoka, D. T., Gumindoga, W., ... & Kakanda, E. T. (2023). Spatial-temporal variability analysis of water quality using remote sensing data: A case study of Lake Manyame. Scientific African, 21, e01877.
Li, J., Ma, R., Cao, Z., Xue, K., Xiong, J., Hu, M., & Feng, X. (2022). Satellite detection of surface water extent: A review of methodology. Water, 14(7), 1148.
Ma, Y., Song, K., Wen, Z., Liu, G., Shang, Y., Lyu, L., ... & Hou, J. (2021). Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9132-9146.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
Moshidi, Z., & Jahangir, M. H. (2021). Evaluation of surface water quality using satellite images in the Simareh Dam reservoir. Ecohydrology, 8(4), 925–939. [In Persian]
Ngamile, S., Madonsela, S., & Kganyago, M. (2025). Trends in remote sensing of water quality parameters in inland water bodies: a systematic review. Frontiers in environmental science, 13, 1549301.
Obaid, A. A., Adam, E. M., Ali, K. A., & Abiye, T. A. (2024). Time Series Analysis of Water Quality Factors Enhancing Harmful Algal Blooms (HABs): A Study Integrating In-Situ and Satellite Data, Vaal Dam, South Africa. Water, 16(5), 764.
Omondi, A. N. A., Ouma, Y., Mburu, S. N., & Achisa, C. M. (2024). Optimization of Reservoir Water Quality Parameters Retrieval and Treatment Using Remote Sensing and Artificial Neural Networks. Journal of Digital Food, Energy & Water Systems, 5(1).
Peterson, K. T., Sagan, V., & Sloan, J. J. (2020). Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GIScience & Remote Sensing, 57(4), 510-525.
Ramesh, J. V. N., Patibandla, P. R., Shanbhog, M., Ambala, S., Ashraf, M., & Kiran, A. (2023). Ensemble deep learning approach for turbidity prediction of Dooskal Lake using remote sensing data. Remote Sensing in Earth Systems Sciences, 6(3), 146-155.
Ross, M. R., Topp, S. N., Appling, A. P., Yang, X., Kuhn, C., Butman, D., ... & Pavelsky, T. M. (2019). AquaSat: A data set to enable remote sensing of water quality for inland waters. Water Resources Research, 55(11), 10012-10025.
Schwatke, C., Dettmering, D. and Seitz, F., (2020). Volume variations of small inland water bodies from a combination of satellite altimetry and optical imagery. Remote Sensing, 12(10), p.1606.
Sekertekin, A., Abdikan, S., & Marangoz, A. M. (2018). The acquisition of impervious surface area from LANDSAT 8 satellite sensor data using urban indices: a comparative analysis. Environmental monitoring and assessment, 190, 1-13.
Song, K., Wang, Z., Blackwell, J., Zhang, B., Fang, L., Zhang, Y., & Jiang, G. (2011). Water quality monitoring using Landsat Themate Mapper data with empirical algorithms in Chagan Lake, China. Journal of Applied Remote Sensing, 5(1), 1-17.
Tanjung, R. H. R., Indrayani, E., Hamuna, B., & Agamawan, L. P. I. (2023). Spatial assessment and mapping of water quality in Lake Sentani (Indonesia) using in-situ data and satellite imagery. Ecological Engineering & Environmental Technology, 24.
Teixeira Pinto, C., Jing, X., & Leigh, L. (2020). Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote sensing, 12(16), 2597.
Yang, Y., Zhang, X., Gao, W., Zhang, Y., & Hou, X. (2023). Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Environmental Science and Pollution Research, 30(35), 83628-83642.
Yigit Avdan, Z., Kaplan, G., Goncu, S., & Avdan, U. (2019). Monitoring the water quality of small water bodies using high-resolution remote sensing data. ISPRS International Journal of Geo-Information, 8(12), 553
Yin, Z., Li, J., Zhang, B., Liu, Y., Yan, K., Gao, M., ... & Wang, S. (2023). Increase in chlorophyll-a concentration in Lake Taihu from 1984 to 2021 based on Landsat observations. Science of The Total Environment, 873, 162168.
Zahiri, A., Feiz Abady, H., & Ghorbani, K. (2024). Estimation of sedimentation rate and storage capacity of reservoir dams using satellite imagery. Iranian Journal of Soil and Water Research, 55(7), 1047-1062.
Zhang, H., Yan, D., Zhang, B., Fu, Z., Li, B., & Zhang, S. (2022). An operational atmospheric correction framework for multi-source medium-high-resolution remote sensing data of China. Remote Sensing, 14(21), 5590.