بررسی تأثیر بیوچار فعال‌شده و هیدروچار حاصل از جلبکChlorella vulgaris بر ویژگی‌های زیستی و آنزیمی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه مراغه، آذربایجان شرقی، ایران

3 گروه کشاورزی، دانشگاه پیام نور تهران، تهران، ایران

چکیده

میکروارگانیسم‌های خاک نقش حیاتی در چرخه عناصر غذایی و فرآیندهای بیوشیمیایی ایفا می‌کنند و فعالیت آن‌ها تا حد زیادی به در دسترس بودن منابع کربنی بستگی دارد. در این مطالعه، تأثیر بیوچار فعال‌شده و هیدروچار حاصل از جلبک Chlorella vulgaris در دو غلظت 5/0 و ۱ درصد بر ویژگی‌های زیستی خاک و فعالیت آنزیمی مورد بررسی قرار گرفت. این آزمایش شامل سه بخش (1) اندازه‌گیری تنفس میکروبی طی ۹۰ روز، (2) بررسی pH خاک و جمعیت‌های میکروبی طی 84 روز و (3) ارزیابی فعالیت آنزیم‌ها (آلکالین فسفاتاز، اسید فسفاتاز، آریل‌سولفاتاز، -βگلوکوزیداز، اینورتاز، پروتئاز و دهیدروژناز) و ویژگی‌های میکروبی در پایان هفته دوازدهم بود. تنفس میکروبی در تیمارهای بیوچار با مقدار 33/315 میلی‌گرم دی‌اکسیدکربن در هر کیلوگرم خاک خشک در روز آغاز شد و تا روز یازدهم کاهش شدید و پس از آن کاهش تدریجی‌ داشت. فعالیت آنزیم آریل‌سولفاتاز در تیمار 5/0 درصد هیدروچار بیشترین مقدار (۲۸۶ میکروگرم PNP در هر گرم خاک در ساعت) و در تیمار شاهد کمترین مقدار (۱۶۶ میکروگرم PNP در هر گرم خاک در ساعت) را نشان داد. در تیمار هیدروچار،pH  خاک ابتدا افزایش یافت، در حالی‌که در تیمار بیوچار در پایان کاهش نشان داد. هر دو تیمار موجب افزایش کربن و فعالیت آنزیمی زیست‌توده میکروبی شدند، اما تأثیر هیدروچار چشمگیرتر بود. این نتایج نشان می‌دهند که هیدروچار می‌تواند به عنوان اصلاح‌کننده‌ای مؤثرتر نسبت به بیوچار در بهبود فعالیت آنزیمی، تنوع میکروبی و تنفس میکروبی خاک مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of activated biochar and hydrochar produced from the algae Chlorella vulgaris on the biological and enzymatic properties of the soil

نویسندگان [English]

  • Jafar Sufian 1
  • mohammad babaakbari 1
  • Armen Avanes 2
  • Salahedin Moradi 3
1 PhD student Department of Soil Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran,
2 Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran, 55187-79842.
3 Department of Agriculture, Payame Noor University, Tehran, Iran
چکیده [English]

Soil microorganisms play a vital role in nutrient cycling and biochemical processes, with their activity largely dependent on the availability of carbon sources. This study compared the effects of activated biochar and hydrochar derived from Chlorella vulgaris on soil biological properties and enzyme activities at concentrations of 0.5% and 1%. The experiment consisted of three components: (1) measurement of microbial respiration over 90 days, (2) monitoring of soil pH and microbial populations over 84 days, and (3) evaluation of enzyme activities (alkaline phosphatase, acid phosphatase, arylsulfatase, β-glucosidase, invertase, protease, and dehydrogenase) and microbial characteristics at the end of week 12. Microbial respiration in the biochar treatment began at 315.33 mg CO₂ kg⁻¹ dry soil day⁻¹, showing a sharp decline by day 11, followed by a gradual decrease. The highest arylsulfatase activity (286 µg PNP g⁻¹ soil h⁻¹) was observed in the 0.5% hydrochar treatment, while the control exhibited the lowest value (166 µg PNP g⁻¹ soil h⁻¹). Soil pH initially increased in the hydrochar treatment but decreased at the end of the experiment in the biochar treatment. Both amendments enhanced microbial biomass carbon and enzyme activities, with hydrochar demonstrating a more pronounced effect. These findings indicate that hydrochar may serve as a more effective soil amendment than biochar in improving microbial respiration, enzyme activities, and microbial diversity.

کلیدواژه‌ها [English]

  • Arylsulfatase
  • Invertase
  • Microbial respiration
  • Soil amendment
  • Soil microorganisms

Introduction

 Soil microorganisms play a vital role in nutrient cycling and biochemical processes, largely relying on available carbon sources. Organic amendments like biochar and hydrochar can enhance microbial and enzymatic activity in soils. This study evaluated the effects of activated biochar and hydrochar from Chlorella vulgaris at 0.5% and 1% concentrations over 90 days, aiming to compare their effectiveness in improving microbial respiration, enzyme function, biomass carbon, and microbial populations.

Materials and Methods

 The microalga Chlorella vulgaris was cultured under controlled laboratory conditions and harvested after two weeks. The biomass was processed to produce biochar through pyrolysis at 450 °C and hydrochar via hydrothermal carbonization at 200 °C. Both biochar and hydrochar were activated using potassium hydroxide (KOH) to enhance surface characteristics. The activated materials were then mixed with soil at 0.5% and 1% concentrations. Soil incubation was conducted in a dark, controlled environment at 25 °C and 70% field capacity. Measurements included microbial respiration at set intervals, pH and microbial populations across 12 weeks, and final enzymatic assays evaluating seven key soil enzymes.

Results and Discussion

Significant shifts in soil pH were observed across treatments. Hydrochar treatments caused an initial rise in soil pH, while biochar treatments led to a gradual decline by the end of the experiment. The highest pH value of 7.82 occurred in the 1% hydrochar treatment during the first week, whereas the lowest pH of 7.53 was recorded in the 1% biochar treatment at week 12. Regarding microbial populations, both bacteria and fungi responded positively to hydrochar, particularly at higher concentrations. The bacterial population peaked at 6.33×10⁶ CFU g-¹ dry soil in the 1% hydrochar treatment during the second week. Similarly, fungal populations reached their maximum in weeks two and three, also in hydrochar-treated soils, indicating enhanced microbial proliferation due to improved carbon and nutrient availability. All treatments exhibited an initial sharp decline in microbial respiration, which later stabilized. This rapid early drop is attributed to the consumption of readily available carbon compounds. The 0.5% hydrochar treatment showed the highest substrate-induced respiration, with a value of 858 mg CO2 kg-1 dry soil day-1, significantly outperforming the control treatment, which measured only 186 mg CO2 kg-1 dry soil day-1. In terms of microbial biomass carbon, the highest amount was found in the 1% hydrochar treatment at 596 mg C mic kg-1 soil, while the control had the lowest at 213 mg C mic kg-1 soil. These results indicate that hydrochar is particularly effective at promoting microbial growth and activity, likely due to its favorable nutrient profile and porous structure that supports microbial colonization. The study showed that both biochar and hydrochar enhanced enzyme activities in soil, with hydrochar demonstrating a stronger influence overall. Alkaline phosphatase activity was highest in the 1% hydrochar treatment, recording 2225 μg P.N.P g-¹ soil h-¹, while the control had the lowest activity at 1303 μg P.N.P g-¹ soil h-¹. Acid phosphatase activity also peaked in the hydrochar 1% treatment at 772 μg P.N.P g-¹ soil h-¹. Arylsulfatase activity was most elevated in the 0.5% hydrochar treatment at 286 μg P.N.P g-¹ soil h-¹, while the control showed only 166 μg P.N.P g-¹ soil h-¹. Invertase activity followed a similar trend, with the highest value recorded in the 1% hydrochar treatment at 450.5 µg glucose g-¹ soil h-¹. Other enzymes such as β-glucosidase, dehydrogenase, and protease also increased in activity across all treatments, with hydrochar-treated soils showing the most substantial gains. The microbial metabolic quotient (qCO₂), an indicator of microbial efficiency in carbon use, decreased with both amendments, particularly hydrochar. Lower qCO₂ values reflect more efficient microbial communities converting carbon to biomass with less energy loss. This suggests reduced soil stress and better resource availability, likely due to a shift toward more efficient groups like fungi.

Conclusion

The results of this study clearly demonstrate that activated hydrochar derived from Chlorella vulgaris outperforms biochar in improving soil biological activity. It significantly boosts microbial biomass, enzyme activity, and respiration while promoting more efficient microbial carbon utilization. These findings highlight hydrochar’s potential as an effective and sustainable soil amendment for improving soil fertility and ecological health, especially in agricultural systems seeking environmentally friendly management practices.

Author Contributions

For research articles with several authors, a short paragraph specifying their individual contributions must be provided. The following statements should be used “Conceptualization, J.S. and M.B.S.; methodology, J.S. and M.B.S.; software, A.A.; validation, J.S., M.B.S. and A.A.; formal analysis, J.S.; investigation, S.M.; resources, A.A.; data curation, S.M.; writing—original draft preparation, M.B.S.; writing—review and editing, J.S.; visualization, J.S.; supervision, J.S.; project administration, S.M.; funding acquisition, M.B.S. All authors have read and agreed to the published version of the manuscript.

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4, 367-374. https://doi.org/10.1016/j.jare.2012.07.004
Adhikari, S., Timms, W., & Mahmud, M. P. (2022). Optimising water holding capacity and hydrophobicity of biochar for soil amendment–A review. Science of The Total Environment, 851, 158043. https://doi.org/10.1016/j.scitotenv.2022.158043
Ahmad, R., Gao, J., & Gao, Z. et al. (2022). Influence of biochar on soil nutrients and associated Rhizobacterial communities of mountainous apple trees in northern loess plateau China. Microorganisms, 10(10), 2078. https://doi.org/10.3390/microorganisms10102078
Ajema, L. (2018). Effects of biochar application on beneficial soil organism. International Journal of Scientific Research in Science, Engineering and Technology, 5(5), 9-18.
Akça, M. O., & Namli, A. (2015). Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. Eurasian Journal of Soil Science, 4(3), 161-168. https://doi.org/10.18393/ejss.2015.3.161-168
Alef, K., & Nannipieri, P. (1995). Methods in applied soil microbiology and biochemistry. 1nd edn. Academic Press, 576 P.
Anderson, C. R., Condron, L. M., & Clough, T. J. et al. (2011). Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5-6), 309-320. https://doi.org/10.1016/j.pedobi.2011.07.005
Anderson, T. H. (2003). Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems & Environment, 98(1-3), 285-293. https://doi.org/10.1016/S0167-8809(03)00088-4
Bandick, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31(11), 1471-1479. https://doi.org/10.1016/S0038-0717(99)00051-6
Berg, B., & McClaugherty, C. (2008). Plant litter: decomposition, humus formation, carbon sequestration (p. 338). Berlin: Springer.
Bhattacharyya, P., Chakrabarti, K., & Chakraborty, A. (2005). Microbial biomass and enzyme activities in submerged rice soil amended with municipal solid waste compost and decomposed cow manure. Chemosphere, 60(3), 310-318. https://doi.org/10.1016/j.chemosphere.2004.11.097
Chang, E. H., Chung, R. S., & Tsai, Y. H. (2007). Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Science and Plant Nutrition, 53(2), 132-140. https://doi.org/10.1111/j.1747-0765.2007.00122.x
Chaves, V. B. S., Guimarães, T. M., Bezerra, A. C. T. P., da Costa, C. H. M., & Cruz, S. C. S. (2024). Enzymatic activity in different crop succession systems in the Cerrado Region. Agronomy, 14(4), 810.
Dar, G. H. (1997). Impact of lead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization. Bulletin of Environmental Contamination and Toxicology, 58(2). https://doi.org/10.1007/s001289900325
Daunoras, J., Kačergius, A., & Gudiukaitė, R. (2024). Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology, 13(2), 85. https://doi.org/10.3390/biology13020085
Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Role of soil enzymes in sustainable crop production. In Enzymes in food biotechnology (569-589). Academic Press,  https://doi.org/10.1016/B978-0-12-813280-7.00033-5
Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology and Biochemistry, 20(5), 601-606. https://doi.org/10.1016/0038-0717(88)90141-1
Elaigwu, S. E., Rocher, V., Kyriakou, G., & Greenway, G. M. (2014). Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana shell. Journal of Industrial and Engineering Chemistry, 20(5), 3467-3473. https://doi.org/10.1016/j.jiec.2013.12.036
Fernandes, S. A. P., Bettiol, W., & Cerri, C. C. (2005). Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity. Applied Soil Ecology, 30(1), 65-77. https://doi.org/10.1016/j.apsoil.2004.03.008
Frankenberger Jr, W. T., & Dick, W. A. (1983). Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Science Society of America Journal, 47(5), 945-951. https://doi.org/10.2136/sssaj1983.03615995004700050021x
Galvez, A., Sinicco, T., & Cayuela, M. L. et al. (2012). Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agriculture, Ecosystems & Environment, 160, 3-14. https://doi.org/10.1016/j.agee.2011.06.015
Garbuz, S., Mackay, A., & Camps-Arbestain, M. et al. (2022). Biochar increases soil enzyme activities in two contrasting pastoral soils under different grazing management. Crop and Pasture Science, 74(1), https://doi.org/10.1071/CP21790
Ge, Q., Dong, C., Wang, G., Zhang, J., & Hou, R. (2024). Production, characterization and environmental remediation application of emerging phosphorus-rich biochar/hydrochar: a comprehensive review. RSC advances, 14(45), 33649-33665.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. pp. 383-409. In Klute, A. (Ed.). Methods of Soil Analysis. Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and Soil Sci. Am. J. Madison, WI.
Godlewska, P., Jośko, I., & Oleszczuk, P. (2022). Ecotoxicity of sewage sludge-or sewage sludge/willow-derived biochar-amended soil. Environmental Pollution, 305, 119235. https://doi.org/10.1016/j.envpol.2022.119235
Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, M. L. and Chanley, M. H., Eds., Culture of Marine Invertebrates Animals, Plenum Press, New York, 29-60. http://dx.doi.org/10.1007/978-1-4615-8714-9_3
Gunina, A., & Kuzyakov, Y. (2022). From energy to (soil organic) matter. Global Change Biology, 28(7), 2169-2182.
Heidari, E., Mohammadi, K., & Pasari, B. et al. (2020). Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Science and Plant Nutrition, 66(2), 255-267. https://doi.org/10.1080/00380768.2019.1704180
Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209, 188-197. https://doi.org/10.1016/j.geoderma.2013.06.016
Horwath, W. R. (2017). The role of the soil microbial biomass in cycling nutrients. Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry, 41-66.
Idris, A. D., Bello, A. B., Hussaini, I. M., Umar, U. A., & Abdulrahim, U. (2024). Soil microbial enzymes and applications. In Soil microbiome in green technology sustainability (pp. 429-461). Cham: Springer Nature Switzerland. 429–461
Jalilian, M., Bissessur, R., & Ahmed, M. et al. (2024). A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption. Science of The Total Environment, 169823. https://doi.org/10.1016/j.scitotenv.2023.169823
James, N., & Sutherland, M. L. (1939). The accuracy of the plating method for estimating the numbers of bacteria and fungi from one dilution and from one aliquot of a laboratory sample of soil. Canadian Journal of Research, 17(4), 97-108.
Jamili, T.,  Alinejadian Bidabadi, A.,  Maleki, A.,  Feizian, M., &  Akbarpour, O. A. (2022). Investigation of biochar application and different levels of irrigation on physico-chemical properties and microbial respiration of cadmium contaminated soil in tomato cultivation. Iranian Journal of Soil and Water Research, 53(5), 937- 956. (In Persian).
Jenkinson, D. S., & Ladd, J. N. (2021). Microbial biomass in soil: measurement and turnover. In Soil biochemistry (pp. 415-472). CRC Press.
Jing, Y., Zhang, Y., & Han, I.  et al. (2020). Effects of different straw biochars on soil organic carbon, nitrogen, available phosphorus, and enzyme activity in paddy soil. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-65796-2
Karami, N., Clemente, R., & Moreno-Jiménez, E. et al. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1-3), 41-48. https://doi.org/10.1016/j.jhazmat.2011.04.025
Karelin, D. V., Zolotukhin, A. N., Ryzhkov, O. V., Lunin, V. N., Zamolodchikov, D. G., & Sukhoveeva, O. E. (2024). Use of long-term soil respiration measurements for calculating the net carbon balance in ecosystems of the central chernozemic region. Eurasian Soil Science, 57(10), 1638-1649.
Karimi, A.,  Abdolamir Moezzi, A., Chorom, M., & Naeimeh Enayatizamir, N. (2020). Influence of sugarcane bagasse biochar on nutrient availability and biological properties of a calcareous soil. Applied Soil Research, 8(1), 1-17. (In Persian).
Khademi, H., Mohammadi, J., & Nael, M. (2006). Comparison of selected soil quality indicators in different land management systems in Boroojen, Chaharmahal Bakhtiari province. Journal of Scientific Agriculture, 39(3), 111-124.
Khatoon, H., Solanki, P., & Narayan, M. et al. (2017). Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. International Journal of Chemical Studies, 5(6), 1648-1656.
Kotroczo, Z., Veres, Z., Fekete, I., Krakomperger, Z., Tóth, J. A., Lajtha, K., & Tóthmérész, B. (2014). Soil enzyme activity in response to long-term organic matter manipulation. Soil Biology and Biochemistry, 70, 237-243. https://doi.org/10.1016/j.soilbio.2013.12.028
Krull, E. S., Baldock, J. A., Skjemstad, J. O., & Smernik, R. J. (2012). Characteristics of biochar: organo-chemical properties. In Biochar for environmental management (85-98). Routledge.
Ladd, J. N., & Butler, J. H. A. (1972). Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biology and Biochemistry, 4(1), 19-30. https://doi.org/10.1016/0038-0717(72)90038-7
Leelahawonge, C., & Pongsilp, N. (2009). Phosphatase activities of root-nodule bacteria and nutritional factors affecting production of phosphatases by representative bacteria from three different genera. Current Applied Science and Technology, 9(2), 65-83.
Li, C. H, Ma, B. L., & Zhang, T. Q. (2002). Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Canadian Journal of Soil Science, 82(2), 147-154.  https://doi.org/10.4141/S01-026
Li, Y., Hu, S., Chen, J., & Müller, K. et al. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18, 546-563. https://doi.org/10.1007/s11368-017-1906-y
Liu, X., Chen, Q., Zhang, H., Zhang, J., Chen, Y., Yao, F., & Chen, Y. (2023). Effects of exogenous organic matter addition on agricultural soil microbial communities and relevant enzyme activities in southern China. Scientific Reports, 13(1), 8045. https://doi.org/10.1038/s41598-023-33498-0
Manna, M. C., Jha, S., Ghosh, P. K., & Acharya, C. L. (2003). Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technology, 88(3), 197-206. https://doi.org/10.1016/S0960-8524(02)00318-8
McLean, E. Q. (1982). Soil pH and lime requirement. In: Page, A. L. Miller, R. H. Keeney, D. R (Eds). Methods of Soil Analysis, Part 2. Chemical and Microbilogycal Properties, 2nd Ed Agronomy, 9, 199-224. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
Merino, C., Godoy, R., & Matus, F. (2016). Soil enzymes and biological activity at different levels of organic matter stability. Journal of Soil Science and Plant Nutrition, 16(1), 14-30. http://dx.doi.org/10.4067/S0718-95162016005000002
Moscatelli, M. C., Di Tizio, A., Marinari, S., & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research, 97(1), 51-59. https://doi.org/10.1016/j.still.2007.08.007
Mukhopadhyay, P., Barman, S., & Chakraborty, R. (2024). Exergy-efficient sustainable production of diesel additive in infrared energized continuous flow rotating real reactor: Optimization, heterogeneous kinetics, and life cycle analyses. Sustainable Energy Technologies and Assessments, 61, 103582.
Nahidan, S., & Sepahvand, S. (2023). The effect of biochar on some biological properties and available phosphorus in cadmium-contaminated soils. Journal of Soil and Water Conservation, 30(3), 45-65.
Nourbakhsh, F., Monreal, C. M., Emtiazy, G., & Dinel, H. (2002). L-asparaginase activity in some soils of central Iran. Arid Land Research and Management, 16(4), 377-384. https://doi.org/10.1080/15324980290000476
Oktaviananda, C., & Prasetya, A. (2019). Hydrothermal Treatment, Sawdust, Corn Cob, Mixture, Solid Fuel. Agrotechnology Innovation (Agrinova), 2(1), 20-25. https://doi.org/10.22146/agrinova.51987
Ouyang, L., Tang, Q., Yu, L., & Zhang, R. (2014). Effects of amendment of different biochars on soil enzyme activities related to carbon mineralisation. Soil Research, 52(7), 706-716. https://doi.org/10.1071/SR14075
Palansooriya, K. N., Wong, J. T. F., & Hashimoto, Y. et al. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3-22. https://doi.org/10.1007/s42773-019-00009-2
Pan, S. Y., Dong, C. D., & Su, J. F. et al. (2021). The role of biochar in regulating the carbon, phosphorus, and nitrogen cycles exemplified by soil systems. Sustainability, 13(10), 5612. https://doi.org/10.3390/su13105612
Pasrija, R., & Kumari, D. (2025). Counting colony forming units (CFU) to estimate viable fungal cells in a sample. In protocols for studying pathogenic fungi (pp. 53-61). Singapore: Springer Nature Singapore, 53-61.
Paz-Ferreiro, J., Fu, S., Méndez, A., & Gascó, G. (2014). Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. Journal of Soils and Sediments, 14, 483-494. https://doi.org/10.1007/s11368-013-0806-z
Paz-Ferreiro, J., Gasco, G., Gutiérrez, B., & Mendez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48(5), 511-517. https://doi.org/10.1007/s00374-011-0644-3
Powlson, D. S., Hirsch, P. R., & Brookes, P. C. (2001). The role of soil microorganisms in soil organic matter conservation in the tropics. Nutrient Cycling in Agroecosystems, 61, 41-51. https://doi.org/10.1023/A:1013338028454
Rao, M. A., Scelza, R., & Gianfreda, L. (2014). Soil enzymes. Enzymes in agricultural sciences. Foster City: OMICS Group eBooks. 10-43.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical Methods, 5, 417-435. https://doi.org/10.2136/sssabookser5.3.c14
Rutigliano, F. A., Romano, M., & Marzaioli, R. et al. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9-15. https://doi.org/10.1016/j.ejsobi.2013.10.007
Salam, A. K., Katayama, A., & Kimura, M. (1998). Activities of some soil enzymes in different land use systems after deforestation in hilly areas of West Lampung, South Sumatra, Indonesia Journal of Soil Science and Plant Nutrition, 44(1), 93-103. https://doi.org/10.1080/00380768.1998.10414429
Schinner, F., & Von Mersi, W. (1990). Xylanase, CM-cellulase-and invertase activity in soil: an improved method. Soil Biology and Biochemistry, 22(4), 511-515. https://doi.org/10.1016/0038-0717(90)90187-5
Sharma, H. B., Vanapalli, K. R., Bhatia, D., Singh, S., Arora, G., Panigrahi, S., ... & Mohanty, B. (2024). Engineered biochar/hydrochar derived from organic wastes for energy, environmental, and agricultural applications. Clean Technologies and Environmental Policy, 26(12), 4059-4093.
Sharma, S. N. (2022). Soil enzymes and their role in nutrient cycling. In Structure and functions of Pedosphere, (pp. 173-188). Singapore: Springer Nature Singapore.
Silva, J. O., Granja, H. S., Santos, J. F. D., Freitas, L. S., & Sussuchi, E. M. (2024). Biochar and hydrochar in the development and application of electrochemical devices in the sensing and degradation of target compounds: A Mini-Review of the recent contributions of 2020-2023. Journal of the Brazilian Chemical Society, 35(1), e-20230143.
Singh, N., Asha, V. K. M., & Singh, D. (2024). Soil enzyme activities as bioindicators of soil health: Implications for sustainable agriculture. Journal of Natural Resource Conservation and Management, 5(2), 124-136.
Sparks, D. L., Helmke, P., & Page, A. (1996). Methods of soil analysis: Chemical methods. Soil Science Society of America.
Stevenson, F. J., & Cole, M. A. (1999). Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons.
Subba Rao, N. S. (1993). Biofertilizers in agriculture and forestry. New Delhi: Oxford Publishing Co. Pvt. Ltd.
Suhane, R. K. (2007). Vermicompost: publication of Rajendra Agriculture University. Pusa, Bihar. 88
Suman, S., Yadav, A. M., Tomar, N., & Bhushan, A. (2020). Combustion characteristics and behaviour of agricultural biomass: A short review. Renewable Energy-Technologies and Applications, 155.
Sun, R., Zhang, X. X., & Guo, X. et al. (2015). Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biology and Biochemistry, 88, 9-18. https://doi.org/10.1016/j.soilbio.2015.05.007
Tabatabai, M. A, & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry, 1(4), 301-307. https://doi.org/10.1016/0038-0717(69)90012-1
Tabatabai, M. A., & Bremner, J. M. (1970). Arylsulfatase activity of soils. Soil Science Society of America Journal, 34(2), 225-229. https://doi.org/10.2136/sssaj1970.03615995003400020016x
Tandon, H. L. S. (1992). Fertilizers and their integration and organics and bio-fertilizers. Fertilizers, organic manures, recyclable wastes and bio-fertilizers. 9, 32-36.
Thalmann, A. (1968). Zur Methodik der Bestimmung der DehydrogenaseaktivitAt im Boden mittels triphenytetrazoliumchlorid (TTC). Landwirtsch Forsch, 21, 249-258.
Thomas, P., Sekhar, A. C., Upreti, R., Mujawar, M. M., & Pasha, S. S. (2015). Optimization of single plate-serial dilution spotting (SP-SDS) with sample anchoring as an assured method for bacterial and yeast cfuenumeration and single colony isolation from diverse samples. Biotechnology Reports, 8, 45-55.
Tian, Y., Li, D., & Wang, Y. et al. (2023). Effect of subsurface drainage combined with biochar on the bacterial community composition of coastal saline soil. Water, 15(15), 2701. https://doi.org/10.3390/w15152701
Tripathi, S., Kumari, S., & Chakraborty, A. et al. (2006). Microbial biomass and its activities in salt-affected coastal soils. Biology and Fertility of Soils, 42(3), 273-277. https://doi.org/10.1007/s00374-005-0037-6
Vafa, H. J., Raiesi, F., & Hosseinpur, A. (2016). Sewage sludge application strongly modifies earthworm impact on microbial and biochemical attributes in a semi-arid calcareous soil from Iran. Applied Soil Ecology, 100, 45-56. https://doi.org/10.1016/j.apsoil.2015.11.022
Vahedi, R., Rasouli Sadaghiani, M. H., & Barin, M. (2019). The effect of fruit trees pruning waste biochar on some soil biological properties under rhizobox conditions. Journal of Water and Soil Science, 23(1), 321-336. (In Persian).
Walkley, A., & Black, I. A. (1934). An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
Wang, F., Zhang, W., & Miao, L. et al. (2021). The effects of vermicompost and shell powder addition on Cd bioavailability, enzyme activity and bacterial community in Cd-contaminated soil: a field study. Ecotoxicology and Environmental Safety, 215, 112163. https://doi.org/10.1016/j.ecoenv.2021.112163
Wang, X., Song, D., & Liang, G. et al. (2015). Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil. Applied Soil Ecology, 96, 265-272. https://doi.org/10.1016/j.apsoil.2015.08.018
Wang, Z., Yun, S., An, Y., Shu, L., Li, S., Sun, K., & Zhang, W. (2025). Effect of fungicides on soil respiration, microbial community, and enzyme activity: A global meta-analysis (1975–2024). Ecotoxicology and Environmental Safety, 289, 117433.
Wright, A. L., Hons, F. M., & Matocha Jr, J. E. (2005). Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations. Applied Soil Ecology, 29(1), 85-92. https://doi.org/10.1016/j.apsoil.2004.09.006
Wu, C., Hou, Y., & Bie, Y. et al. (2020). Effects of biochar on soil water-soluble sodium, calcium, magnesium and soil enzyme activity of peach seedlings. In IOP Conference Series: Environmental Earth Sciences, 446, 3, p. 032007. https://doi.org/10.1088/1755-1315/446/3/032007
Yadav, S. K., Khokhar, U. U., Sharma, S. D., & Kumar, P. (2016). Response of strawberry to organic versus inorganic fertilizers. Journal of Plant Nutrition, 39(2), 194-203. https://doi.org/10.1080/01904167.2015.1109115
Zhang, L., Ding, X., Chen, S., & He, X. et al. (2014). Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus. Journal of Plant Interactions, 9(1), 850-856. https://doi.org/10.1080/17429145.2014.977831