تأثیر کاربرد توأمان بیوچار و کود پتاسیمی بر وضعیت پتاسیم، عملکرد و برخی اجزای عملکرد برنج در دو خاک شالیزاری تخلیه‌شده از پتاسیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

2 گروه علوم و مهندسی خاک- دانشکده علوم زراعی-دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری- ایران

چکیده

هدف مطالعه حاضر تعیین تأثیر کاربرد توامان بیوچار نرمال و اسیدی کاه و کلش برنج و کود پتاسیمی بر وضعیت پتاسیم، عملکرد و اجزای عملکرد برنج در دو خاک شالیزاری تخلیه پتاسیم شده، در نظر گرفته شد. این آزمایش در قالب طرح کاملاً تصادفی به صورت فاکتوریل با دو فاکتور سطوح بیوچار ( در سه سطح 0 (B0) و 1 درصد بیوچار نرمال (NB1) و 1 درصد بیوچار اسیدی (AB1 )) و سطوح کود پتاسیمی ( در پنج سطح 0، 25 درصد، 50 درصد، 75 درصد و 100 درصد توصیه کودی) در سه تکرار و با مجموعاً 15 تیمار در دو خاک شالیزاری با بافت مختلف تحت کشت برنج رقم شیرودی انجام شد. نتایج نشان داد که با افزودن بیوچارهای نرمال و اسیدی (NB1 و AB1) به‌همراه مقادیر مختلف کود پتاسیمی (K0, K25, K50, K75, K100)، محتوای پتاسیم، عملکرد و اجزای عملکرد برنج افزایش یافت. به‌طوری‌که تیمار NB1K50 بیش‌ترین توانایی را در افزایش غلظت پتاسیم زیست‌توده و دانه برنج در دو خاک لوم رسی و لوم شنی داشت. تیمار NB1K50 در هر دو خاک دارای بیش‌ترین ارتفاع و وزن هزار دانه گیاه نیز بود. بیش‌ترین میزان عملکرد زیست‌توده گیاه متعلق به کاربرد AB1K100 و بیش‌ترین میزان عملکرد دانه برنج مربوط به کاربرد NB1K100 در دو خاک لوم رسی و لوم شنی است. بنابراین بر اساس یافته‌های این تحقیق، کاربرد توامان بیوچار و کود پتاسیمی موجب افزایش محتوای پتاسیم در اندام‌های مختلف گیاه برنج و افزایش رشد و عملکرد گیاه شده است. بیوچار، حاوی مقدار زیادی پتاسیم فعال شده است که می‌تواند به‌عنوان یک عامل اصلاح‌کننده خاک در جهت تأمین پتاسیم برای محصولات در کوتاه مدت استفاده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of biochar application along with potassium fertilizer on soil K status, rice yield and yield components in two K-depleted paddy soils

نویسندگان [English]

  • Zohreh Noori amirkolaei 1
  • Bahi Jalili 2
  • fardin Sadegh-zadeh 1
1 Department of Soil Science, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Department of Soil Science, Faculty of Crop Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

This study aimed to evaluate the effect of combining normal and acidic rice straw biochars with potassium fertilizer on the potassium status, yield, and yield components of rice in two potassium-depleted paddy soils. This experiment was conducted using a completely randomized design as a factorial with two factors: biochar levels (at three levels of 0 (B0), 1 percent normal biochar (NB1) and 1 percent acidic biochar (AB1)) and potassium fertilizer levels (at five levels of 0, 25%, 50%, 75%, and 100% of the fertilizer recommendation) in three replications, resulting in a total of 15 treatments across two paddy soils with different textures under Shirodi rice cultivation. The results showed that the addition of normal and acidic biochars (NB1 and AB1), along with varying amounts of potassium fertilizer (K0, K25, K50, K75, and K100), increased the potassium content, yield, and yield components of rice. Therefore, the NB1K50 treatment had the greatest ability to enhance the potassium concentration in biomass and rice grain in both clay loam and sandy loam soils. The NB1K50 treatment also achieved the highest plant height and 1,000-seed weight in both soils. The highest plant biomass yield was obtained with the application of AB1K100, and the highest rice grain yield resulted from the application of NB1K100 in clay loam and sandy loam soils. Overall, it seems that the combined application of biochar and potassium fertilizer has increased the potassium content in different parts of the rice plant and has enhanced plant growth and yield. Biochar contains a substantial amount of activated potassium that can serve as a soil amendment agent to provide potassium to crops in the short term.

کلیدواژه‌ها [English]

  • Biochar
  • paddy soil
  • plant nutrition
  • potassium
  • rice

Introduction:

Rice (Oryza sativa L.) is the second most important crop after wheat and plays a significant role in feeding the world's population. This cash crop is cultivated in Iran mainly in the two provinces of Mazandaran and Gilan under flooded conditions. Potassium is one of the essential elements for rice, which plays a significant role in increasing the yield and quality of the crop and its deficiency reduces crop production. Recently, the use of biochar has become popular due to its economic and environmental benefits as an organic source for soil fertility management and plant nutrition. High amounts of potassium in plant residues and the biochar obtained from them can have a significant impact on the potassium status in the soil.

Objective:

This study was conducted to determine the effect of the combined application of normal and acidic rice straw biochars and potassium fertilizer on the potassium status, yield, and yield components of rice in two potassium-depleted paddy soils.

Materials and Methods:

An experiment was conducted in a completely randomized design as a factorial with two factors: biochar levels (at three levels of 0 (B0), 1 percent normal biochar (NB1) and 1 percent acidic biochar (AB1)) and potassium fertilizer levels (at five levels of 0, 25%, 50%, 75%, and 100% of the fertilizer recommendation) in three replications and with a total of 15 treatments in two paddy soils with different textures under Shirodi rice cultivation. At the end of the cultivation period and after harvesting the plant shoots, yield, yield components, biomass and grain potassium concentration, rice response, as well as the amount of exchangeable and non-exchangeable potassium forms and total soil potassium were also determined.

Results:

The results showed that the addition of normal and acidic biochars (NB1 and AB1) along with different amounts of potassium fertilizer (K0, K25, K50, K75, and K100) increased the potassium content, yield, and yield components of rice. Therefore, the NB1K50 treatment had the greatest ability to increase the potassium concentration of biomass and rice grain. This treatment was able to increase the potassium concentration of biomass in two clay loam and sandy loam soils by 3 and 5 times compared to the control, respectively. It also increased the potassium concentration of rice grain by 46.6 and 54.2 percent compared to the control in two clay loam and sandy loam soils, respectively. The NB1K50 treatment had the highest plant height and 1000-seed weight in both soils. This treatment increased the height and 1000-seed weight of the plant in clay loam soil by 17.4 and 36.9 percent, respectively, and in sandy loam soil by 22.7 and 37.2 percent, respectively, compared to the control. The highest plant biomass yield was obtained with the application of AB1K100, which was able to increase the plant biomass yield in clay loam and sandy loam soils by 81 and 83 percent, respectively, compared to the control. The highest rice grain yield was obtained with the application of NB1K100, which increased the rice grain yield in clay loam and sandy loam soils by 2.2 times compared to the control.

Conclusion:

Overall, it seems that the combined application of biochar and potassium fertilizer has increased the potassium content in different parts of the rice plant and also increased plant growth and yield. On the other hand, the use of biochar alone has also been successful in increasing the potassium content and yield and yield components of rice. In general, biochar contains a large amount of activated potassium that can be used as a soil amendment agent to provide potassium to crops in the short term and have a favorable effect on plant growth and yield.

Authors' Contributions:

Behi Jalili proposed the presented idea. Developed the theory validated the analytical methods and performed the calculations. Zohreh Nouri Amirkolaei experimented, collected the data and performed the calculations in the software. Fardin Sadeghzadeh reviewed, monitored, and confirmed the findings of this work. All authors discussed the results and contributed to the final version of the article. All authors have read and agreed with the published version of the article.

Statement of Data Availability

Data will be available upon request from the authors.

Acknowledgments

The authors consider it necessary to thank and acknowledge all participants in the present study.

Ethical considerations

The authors avoided data falsification, distortion, plagiarism, infringement, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Karim, A. A., Kumar, M., Singh, S. K., Panda, C. R., & Mishra, B. K. (2017). Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. Journal of Analytical and Applied Pyrolysis123, 165-172.
Abu Zied Amin, A. E. E. (2016). Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Communications in Soil Science and Plant Analysis47(17), 2026-2033.
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G. H., & Pourbabaee, A. A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth Original Paper. Plant, Soil and Environment61(11).
Bagyalakshmi, B., Ponmurugan, P., & Marimuthu, S. (2012). Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). African  Journal of Agricultural Research7(30), 4250-4259.
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. Global Change Biology bioenergy5(2), 202-214.
Bertsch, P. M., & Thomas, G. W. (1985). Potassium status of temperate region soils. Potassium in agriculture, 129-162.
Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as a soil potassium management strategy: A review. Science of the Total Environment858, 159782.
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624.
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., ... & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma337, 536-554.
Fallah Tolekolai, S., Bahmanyar, M.A., & Sadeghzadeh, F. (2015). The effect of applying municipal soild waste compost and boichar on yield and concentration of some macro and micro nutrients in rice plant. M.Sc. Thesis in soil science and Engineering, soil chemistry, fertility, and plant nutrition. Faculty of agricultural sciences.Sari Agricultural Sciences and Natural Resources University.88pp. (in persian)
Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods5, 383-411.
Golestani Fard, A. & Tofighi, H. (2008). Potassium fixation in paddy soils in north of Iran. Iranian. Journal of Agricalture Science, 39, 173–185.
Golestanifard, A., Santner, J., Aryan, A., Kaul, H. P., & Wenzel, W. W. (2020). Potassium fixation in northern Iranian paddy soils. Geoderma375, 114475.
Gu, W., Wang, Y., Feng, Z., Wu, D., Zhang, H., Yuan, H., ... & Zhang, W. (2022). Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and japonica rice production system. Frontiers in Environmental Science10, 902752.
Havlin, J.L., Beaton, J.D., Tisdale, S.L., & Nelson, W.L. (1991). Soil fertility and fertilizers in introduction to nutrient management. Prentice-Hall, 196-216.
Houshmandfar, A.R., Tehrani, M.M., & Delnavaz Hashemlouyan, B. (2008). The Effects Of Different Nitrogen Levels On Grain Protein And The Nitrogen Use Efficiency Of Wheat. Plant And Ecosystem, 4(15), 52-62. (in persian).
Huang, M., Long, F. A. N., Jiang, L. G., Yang, S. Y., Zou, Y. B., & Uphoff, N. (2019). Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of integrative agriculture18(3), 563-570.
International Rice Research Institute (IRRI).
IBI. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil.
Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere142, 184-191.
Jalali, M., & Kolahchi, Z. (2007). Short‐term potassium release and fixation in some calcareous soils. Journal of Plant Nutrition and Soil Science170(4), 530-537.
Knudsen, D. L., Peterson, G. A., & Pratt, P. F. (1992). Lithium, sodium, and potassium. Methods of soil analysis: part 2 chemical and microbiological properties9, 225-246.
Li, X., Lu, J., Wu, L., & Chen, F. (2009). The difference of potassium dynamics between yellowish red soil and yellow cinnamon soil under rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant and Soil320, 141-151.
Li, X., Zhan, L., Lu, J., Liao, Z., Li, J., Ren, T., & Cong, R. (2014). Potassium mobilization and transformation in red paddy soil as affected by rice. Agronomy Journal106(3), 1011-1017.
Liu, S., Tang, W., Yang, F., Meng, J., Chen, W., & Li, X. (2018). Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer. Preparative Biochemistry and Biotechnology47(1), 32-37.
Lindsay, W.L., Norwell,W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42: 421–428.
Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology16(4), 1366-1379.
Malakouti, M.J., & Homaei, M. (2004). Soil fertility management in arid and semi- arid regions: constraints and mitigation strategies.Tarbiat Modares university, office for Scientific Publications, Tehran, Iran,502pp. (in persian).
Malakouti, M.J., Shahabi, A.A., & Bazargan, K. (2016). Potassium in agriculture: the unrecegnized role in the production of healthy agricultural crops.Mobaleghan publishing house, Tehran, Iran, 360pp. (in persian).
Masulili, A., Utomo, W. H., & Syechfani, M. S. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science2(1), 39.
Mizutani, Y., Kubotera, H., Fujii, T., Maeda, T., Watanabe, M., & Hiradate, S. (2024). Recharge of exchangeable K from non-exchangeable fractions as affected by exchangeable K and K acquisition by rice in Japanese paddy soils. Soil Science and Plant Nutrition70(4), 295-305.
Mousavi, Y., Mohammadian, M., & Nasiri, M. (2010). Top-Dressing fertilization with different” ratios of potassium chloride and on” yield and quality of shiroudi rice cultivar. 11th Iranian congress on agronomy and plant breeding,Tehran,2010. (in persian).
Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil science and plant nutrition54(4), 479-489.
Nelson, R. E. (1982). Carbonate and gypsum. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 181-197.
Nouri, Z., Jalili, B., & Sadegh-Zadeh, F. (2024). Biochars application reduces potassium fixation and improves rice potassium content in K-depleted paddy soils. Journal of Environmental Management.
Olsen, S.R., Cole, C.V., Watanabe, F.S., & Dean, C.A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. U. S. Department of Agricultur Circular, 939(19).
Oram, N. J., van de Voorde, T. F., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Van Groenigen, J. W. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment191, 92-98.
Pratt, P.F. (1965). Potassium. In: Methods of Soil Analysis: Part2 Chemical and Microbiological Properties, 9.2. Ed(s): Norman, A.G,1022-1030.
Rhoades, J. D. (1992). Soluble salts. In: Page, A.L., R.H. Miller and D.R. Keeney. Method of soil Analysis. Part II: Chemical and Mineralogical Properties, 2nd edn. Madison, Wisconsin: SSSA.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods5, 417-435.
Sadegh‐Zadeh, F., Parichehreh, M., Jalili, B., & Bahmanyar, M. A. (2018). Rehabilitation of calcareous saline‐sodic soil by means of biochars and acidified biochars. Land Degradation & Development29(10), 3262-3271.
Sahin, O., Taskin, M. B., Kaya, E. C., Atakol, O. R. H. A. N., Emir, E., Inal, A., & Gunes, A. Y. D. I. N. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management33(3), 447-456.
Sun, Z., Bruun, E. W., Arthur, E., de Jonge, L. W., Moldrup, P., Hauggaard-Nielsen, H., & Elsgaard, L. (2014). Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils50, 1087-1097.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods5, 1201-1229.
Sawhney, B. L. (1972). Selective sorption and fixation of cations by clay minerals: a review. Clays and clay minerals20(2), 93-100.
Simonsson, M., Hillier, S., & Öborn, I. (2009). Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma151(3-4), 109-120.
Simard, R. R., Zizka, J., & De Kimpe, C. R. (1992). Release of potassium and magnesium from soil fractions and its kinetics. Soil Science Society of America Journal56(5), 1421-1428.
Silber, A., Levkovitch, I., & Graber, E. R. (2010). pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environmental science & technology44(24), 9318-9323.
Portela, E., Monteiro, F., Fonseca, M., & Abreu, M. M. (2019). Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma343, 226-234.
Poursaleh, M. (1994). Cereal Crop: wheat, barley, rice and maize.Saffar publications,144pp. (in persian).
Tan, D., Liu, Z., Jiang, L., Luo, J., & Li, J. (2017). Long-term potash application and wheat straw return reduced soil potassium fixation and affected crop yields in North China. Nutrient Cycling in Agroecosystems108, 121-133.
Tavaloli, H., & Semnani, A. (1991). Methods of analysis of soil, plants waters and fertilisers.Shahid chamran University publications.Ahvaz.219pp. (in persian).
Towfighi, H. (1999). Response of rice to potassium application in paddy soils of northern Iran. Iranian Journal of Agricultural Sciences, 29(4), 869-883.
USDA, (2020). World Rice Supply and Utilization. Available at https://www.ers.usda.gov/ data-products/rice-yearbook/ (Accessed: 12 July 2020).
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science37(1), 29-38.
Wang, Y., Yin, R., & Liu, R. 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375-381.
Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science181(5), 635-643.
Wu, X., Wang, D., Riaz, M., Zhang, L., & Jiang, C. (2019). Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicology and environmental safety182, 109451.
Zhao, H. B., Song, Q., Wu, X. Y., & Yao, Q. (2015). Study on the transformation of inherent potassium during the fast-pyrolysis process of rice straw. Energy & fuels29(10), 6404-6411.
Zhao, W., Zhou, Q., Tian, Z., Cui, Y., Liang, Y., & Wang, H. (2020). Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment722,
Karim, A. A., Kumar, M., Singh, S. K., Panda, C. R., & Mishra, B. K. (2017). Potassium enriched biochar production by thermal plasma processing of banana peduncle for soil application. Journal of Analytical and Applied Pyrolysis123, 165-172.
Abu Zied Amin, A. E. E. (2016). Impact of corn cob biochar on potassium status and wheat growth in a calcareous sandy soil. Communications in Soil Science and Plant Analysis47(17), 2026-2033.
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G. H., & Pourbabaee, A. A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth Original Paper. Plant, Soil and Environment61(11).
Bagyalakshmi, B., Ponmurugan, P., & Marimuthu, S. (2012). Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). African  Journal of Agricultural Research7(30), 4250-4259.
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and nutrient cycling: a meta‐analysis. Global Change Biology bioenergy5(2), 202-214.
Bertsch, P. M., & Thomas, G. W. (1985). Potassium status of temperate region soils. Potassium in agriculture, 129-162.
Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., & Gasparatos, D. (2023). Biochar application as a soil potassium management strategy: A review. Science of the Total Environment858, 159782.
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen—total. Methods of soil analysis: part 2 chemical and microbiological properties, 9, 595-624.
El-Naggar, A., Lee, S. S., Rinklebe, J., Farooq, M., Song, H., Sarmah, A. K., ... & Ok, Y. S. (2019). Biochar application to low fertility soils: A review of current status, and future prospects. Geoderma337, 536-554.
Fallah Tolekolai, S., Bahmanyar, M.A., & Sadeghzadeh, F. (2015). The effect of applying municipal soild waste compost and boichar on yield and concentration of some macro and micro nutrients in rice plant. M.Sc. Thesis in soil science and Engineering, soil chemistry, fertility, and plant nutrition. Faculty of agricultural sciences.Sari Agricultural Sciences and Natural Resources University.88pp. (in persian)
Gee, G. W., & Bauder, J. W. (1986). Particle‐size analysis. Methods of soil analysis: Part 1 Physical and mineralogical methods5, 383-411.
Golestani Fard, A. & Tofighi, H. (2008). Potassium fixation in paddy soils in north of Iran. Iranian. Journal of Agricalture Science, 39, 173–185.
Golestanifard, A., Santner, J., Aryan, A., Kaul, H. P., & Wenzel, W. W. (2020). Potassium fixation in northern Iranian paddy soils. Geoderma375, 114475.
Gu, W., Wang, Y., Feng, Z., Wu, D., Zhang, H., Yuan, H., ... & Zhang, W. (2022). Long-term effects of biochar application with reduced chemical fertilizer on paddy soil properties and japonica rice production system. Frontiers in Environmental Science10, 902752.
Havlin, J.L., Beaton, J.D., Tisdale, S.L., & Nelson, W.L. (1991). Soil fertility and fertilizers in introduction to nutrient management. Prentice-Hall, 196-216.
Houshmandfar, A.R., Tehrani, M.M., & Delnavaz Hashemlouyan, B. (2008). The Effects Of Different Nitrogen Levels On Grain Protein And The Nitrogen Use Efficiency Of Wheat. Plant And Ecosystem, 4(15), 52-62. (in persian).
Huang, M., Long, F. A. N., Jiang, L. G., Yang, S. Y., Zou, Y. B., & Uphoff, N. (2019). Continuous applications of biochar to rice: Effects on grain yield and yield attributes. Journal of integrative agriculture18(3), 563-570.
International Rice Research Institute (IRRI).
IBI. (2012). Standardized product definition and product testing guidelines for biochar that is used in soil.
Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2016). Designer, acidic biochar influences calcareous soil characteristics. Chemosphere142, 184-191.
Jalali, M., & Kolahchi, Z. (2007). Short‐term potassium release and fixation in some calcareous soils. Journal of Plant Nutrition and Soil Science170(4), 530-537.
Knudsen, D. L., Peterson, G. A., & Pratt, P. F. (1992). Lithium, sodium, and potassium. Methods of soil analysis: part 2 chemical and microbiological properties9, 225-246.
Li, X., Lu, J., Wu, L., & Chen, F. (2009). The difference of potassium dynamics between yellowish red soil and yellow cinnamon soil under rapeseed (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant and Soil320, 141-151.
Li, X., Zhan, L., Lu, J., Liao, Z., Li, J., Ren, T., & Cong, R. (2014). Potassium mobilization and transformation in red paddy soil as affected by rice. Agronomy Journal106(3), 1011-1017.
Liu, S., Tang, W., Yang, F., Meng, J., Chen, W., & Li, X. (2018). Influence of biochar application on potassium-solubilizing Bacillus mucilaginosus as potential biofertilizer. Preparative Biochemistry and Biotechnology47(1), 32-37.
Lindsay, W.L., Norwell,W.A. (1978). Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42: 421–428.
Major, J., Lehmann, J., Rondon, M., & Goodale, C. (2010). Fate of soil‐applied black carbon: downward migration, leaching and soil respiration. Global Change Biology16(4), 1366-1379.
Malakouti, M.J., & Homaei, M. (2004). Soil fertility management in arid and semi- arid regions: constraints and mitigation strategies.Tarbiat Modares university, office for Scientific Publications, Tehran, Iran,502pp. (in persian).
Malakouti, M.J., Shahabi, A.A., & Bazargan, K. (2016). Potassium in agriculture: the unrecegnized role in the production of healthy agricultural crops.Mobaleghan publishing house, Tehran, Iran, 360pp. (in persian).
Masulili, A., Utomo, W. H., & Syechfani, M. S. (2010). Rice husk biochar for rice based cropping system in acid soil 1. The characteristics of rice husk biochar and its influence on the properties of acid sulfate soils and rice growth in West Kalimantan, Indonesia. Journal of Agricultural Science2(1), 39.
Mizutani, Y., Kubotera, H., Fujii, T., Maeda, T., Watanabe, M., & Hiradate, S. (2024). Recharge of exchangeable K from non-exchangeable fractions as affected by exchangeable K and K acquisition by rice in Japanese paddy soils. Soil Science and Plant Nutrition70(4), 295-305.
Mousavi, Y., Mohammadian, M., & Nasiri, M. (2010). Top-Dressing fertilization with different” ratios of potassium chloride and on” yield and quality of shiroudi rice cultivar. 11th Iranian congress on agronomy and plant breeding,Tehran,2010. (in persian).
Nakao, A., Thiry, Y., Funakawa, S., & Kosaki, T. (2008). Characterization of the frayed edge site of micaceous minerals in soil clays influenced by different pedogenetic conditions in Japan and northern Thailand. Soil science and plant nutrition54(4), 479-489.
Nelson, R. E. (1982). Carbonate and gypsum. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 181-197.
Nouri, Z., Jalili, B., & Sadegh-Zadeh, F. (2024). Biochars application reduces potassium fixation and improves rice potassium content in K-depleted paddy soils. Journal of Environmental Management.
Olsen, S.R., Cole, C.V., Watanabe, F.S., & Dean, C.A. (1954). Estimation of available phosphorous in soils by extraction with sodium bicarbonate. U. S. Department of Agricultur Circular, 939(19).
Oram, N. J., van de Voorde, T. F., Ouwehand, G. J., Bezemer, T. M., Mommer, L., Jeffery, S., & Van Groenigen, J. W. (2014). Soil amendment with biochar increases the competitive ability of legumes via increased potassium availability. Agriculture, Ecosystems & Environment191, 92-98.
Pratt, P.F. (1965). Potassium. In: Methods of Soil Analysis: Part2 Chemical and Microbiological Properties, 9.2. Ed(s): Norman, A.G,1022-1030.
Rhoades, J. D. (1992). Soluble salts. In: Page, A.L., R.H. Miller and D.R. Keeney. Method of soil Analysis. Part II: Chemical and Mineralogical Properties, 2nd edn. Madison, Wisconsin: SSSA.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods5, 417-435.
Sadegh‐Zadeh, F., Parichehreh, M., Jalili, B., & Bahmanyar, M. A. (2018). Rehabilitation of calcareous saline‐sodic soil by means of biochars and acidified biochars. Land Degradation & Development29(10), 3262-3271.
Sahin, O., Taskin, M. B., Kaya, E. C., Atakol, O. R. H. A. N., Emir, E., Inal, A., & Gunes, A. Y. D. I. N. (2017). Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use and Management33(3), 447-456.
Sun, Z., Bruun, E. W., Arthur, E., de Jonge, L. W., Moldrup, P., Hauggaard-Nielsen, H., & Elsgaard, L. (2014). Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils. Biology and Fertility of Soils50, 1087-1097.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods5, 1201-1229.
Sawhney, B. L. (1972). Selective sorption and fixation of cations by clay minerals: a review. Clays and clay minerals20(2), 93-100.
Simonsson, M., Hillier, S., & Öborn, I. (2009). Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma151(3-4), 109-120.
Simard, R. R., Zizka, J., & De Kimpe, C. R. (1992). Release of potassium and magnesium from soil fractions and its kinetics. Soil Science Society of America Journal56(5), 1421-1428.
Silber, A., Levkovitch, I., & Graber, E. R. (2010). pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environmental science & technology44(24), 9318-9323.
Portela, E., Monteiro, F., Fonseca, M., & Abreu, M. M. (2019). Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma343, 226-234.
Poursaleh, M. (1994). Cereal Crop: wheat, barley, rice and maize.Saffar publications,144pp. (in persian).
Tan, D., Liu, Z., Jiang, L., Luo, J., & Li, J. (2017). Long-term potash application and wheat straw return reduced soil potassium fixation and affected crop yields in North China. Nutrient Cycling in Agroecosystems108, 121-133.
Tavaloli, H., & Semnani, A. (1991). Methods of analysis of soil, plants waters and fertilisers.Shahid chamran University publications.Ahvaz.219pp. (in persian).
Towfighi, H. (1999). Response of rice to potassium application in paddy soils of northern Iran. Iranian Journal of Agricultural Sciences, 29(4), 869-883.
USDA, (2020). World Rice Supply and Utilization. Available at https://www.ers.usda.gov/ data-products/rice-yearbook/ (Accessed: 12 July 2020).
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science37(1), 29-38.
Wang, Y., Yin, R., & Liu, R. 2014. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375-381.
Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science181(5), 635-643.
Wu, X., Wang, D., Riaz, M., Zhang, L., & Jiang, C. (2019). Investigating the effect of biochar on the potential of increasing cotton yield, potassium efficiency and soil environment. Ecotoxicology and environmental safety182, 109451.
Zhao, H. B., Song, Q., Wu, X. Y., & Yao, Q. (2015). Study on the transformation of inherent potassium during the fast-pyrolysis process of rice straw. Energy & fuels29(10), 6404-6411.
Zhao, W., Zhou, Q., Tian, Z., Cui, Y., Liang, Y., & Wang, H. (2020). Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Science of the Total Environment722, 137428.
Zhang, M., Riaz, M., Liu, B., Xia, H., El-Desouki, Z., & Jiang, C. (2020). Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Science of the Total Environment717, 137286.
137428.
Zhang, M., Riaz, M., Liu, B., Xia, H., El-Desouki, Z., & Jiang, C. (2020). Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Science of the Total Environment717, 137286.