تأثیر رسوب میکروبی کربنات کلسیم القا شده با باکتری بومی باسیلوس لیچنیفورمیس بر فعالیت آنزیمی شن‌های روان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم خاک، دانشکده کشاورزی و دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران. رایانامه:

2 گروه مهندسی علوم خاک، دانشکده کشاورزی و دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران.

3 گروه مهندسی علوم خاک، دانشکده کشاورزی و دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

4 گروه زیست‌شناسی، دانشکده علوم و دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

افزودنی‌های زیستی و غیرزیستی، رویکردی مؤثر برای افزایش تثبیت شن روان به شمار رفته و یکی از روش‌های نوین در دستیابی به این امر، رسوب میکروبی کربنات کلسیم (MICP) است. این پژوهش با هدف بررسی تأثیر رسوب میکروبی کربنات کلسیم با استفاده از باکتری‌های بومیBacillus licheniformis  بر فعالیت آنزیمی شن‌های روان انجام شد. در این پژوهش، تأثیر ویناس (پسماند تولیدی صنایع نیشکر) به عنوان محیط کشت و همچنین تأثیر پی‌اچ ویناس، افزودن اوره و کلرید کلسیم و زمان بر فعالیت آنزیم‌های کاتالاز، دهیدروژناز و اوره‌آز شن‌های روان ارزیابی شد. نتایج نشان دادند که جدایه‌های بومی B. licheniformis  در مقایسه با باکتری شاخص Sporosarcina pasteurii  قادر به ایجاد فعالیت آنزیمی مشابه یا بیشتر در شن‌های روان بودند. بیشترین فعالیت کاتالاز و دهیدروژناز به‌ترتیب با مقادیر KMnO4.g-1.h-1 2/3 و  µg TPF.g-1 dm.16h-1609/7 در شن‌های روان تیمار شده با B. licheniformis  مشاهده شد. فعالیت اوره‌آزی بیشتر نیز در تیمار با S. pasteurii  با مقدار  µgNH4+.N.g-1.2h-1512/7 مشاهده گردید. علاوه بر این، زمان انکوباسیون و پی‌اچ اولیه ویناس تأثیر قابل توجهی بر فعالیت آنزیمی داشتند.  این پژوهش نشان می‌دهد که استفاده از باکتری‌های بومی در فرآیندهای MICP می‌تواند به عنوان یک روش پایدار و مقرون به صرفه برای بهبود ویژگی‌های شن‌های روان و تقویت ساختار آن مطرح شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of microbial-induced calcium carbonate precipitation by native Bacillus licheniformis on enzymatic activity in Khuzestan sand dunes

نویسندگان [English]

  • Ngin pirhadi 1
  • Bijan Khalilimoghadam 2
  • Habib Nadian 3
  • Hossein Motamedi 4
1 Agricultural Sciences and Natural Resources University of Khuzestan
2 Agricultural Sciences and Natural Resources University of Khuzestan
3 Agricultural Sciences and Natural Resources University of Khuzestan
4 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Bio and non-bio additives are considered effective approaches for increasing the stabilization of sand dunes, and one of the novel methods to achieve this is Microbial Carbonate Precipitation (MICP). This study aimed to investigate the effect of MICP using indigenous bacteria Bacillus licheniformis on the enzymatic activity of sand dunes. This study evaluated the impact of vinasse (a byproduct of sugarcane industries) as a culture medium, as well as the effect of vinasse pH, the addition of urea and calcium chloride, and incubation time on the activities of soil catalase, dehydrogenase, and urease enzymes.  The results showed that the indigenous isolates of B. licheniformis were capable of generating enzymatic activity similar to or better than that of the indicator bacterium S. pasteurii in the soil. The highest catalase and dehydrogenase activities in soils treated with B. licheniformis were measured at 3.2 KMnO4.g-1.h-1 and 7.609 µg TPF.g-1 dm.16h-1, respectively, while the highest urease activity was observed in the treatment with S. pasteurii, registering at 7.512 µgNH4+.N. g-1.2h-1. In addition, the incubation time and initial pH of vinasse significantly influenced enzymatic activity. This research demonstrated that the use of indigenous bacteria in MICP processes could serve as a sustainable and economical method for improving soil characteristics and enhancing its structure. 

کلیدواژه‌ها [English]

  • catalase
  • dehydrogenase
  • urease
  • vinasse

Introduction

Recently, there has been increasing emphasis on ecosystem-based and biological methods for soil conservation, such as stabilizing sand dunes, has led to innovative strategies that leverage soil microbial communities. The microbially induced calcium carbonate precipitation (MICP) method generates carbonate and ammonium ions through the hydrolysis of urea by microbes, resulting in calcium carbonate precipitates in the presence of calcium. Ureolytic bacteria are particularly suitable for biocement technology due to their straightforward processes. Selecting appropriate strains for MICP is crucial, with Sporosarcina pasteurii being the primary focus due to its effectiveness. Moreover, indigenous bacteria offer advantages over non-native strains, as they adapt better to local environments and can reduce costs. This study examines the enzymatic activity of sandy soils treated with vinasse and Bacillus licheniformis in comparison to S. pasteurii.

Material and methods

The sampling area features sandy soil with neutral pH and high electrical conductivity. Three isolates of B. licheniformis were obtained from sandy dunes as indigenous strains, while S. pasteurii served as a control. Bacterial inoculum reached approximately 109 CFU. Collected sands were sterilized and placed in experimental trays, with three types of vinasse applied, differing in pH. Treatments included acidic and neutral vinasses, supplemented with urea and calcium chloride as cementing agents. Sampling occurred at the end of first, third, and fifth weeks of incubation to measure enzymatic activities of catalase, dehydrogenase, and urease. Data analysis used a split-plot design and Duncan's multiple range test at a 5% significance level.

Results and discussion

The highest catalase activity was observed in the combination of B. licheniformis strain 1D2, vinasse from alcohol and yeast mixture, with acidic pH, along with urea and calcium chloride at the third week. The catalase enzyme activity indicates the activity of aerobic microorganisms and soil fertility. Studies show that microbial communities under oxidative stress (higher H2O2 production) have increased catalase concentrations. Some reports indicate increased catalase enzyme activity in soils irrigated with vinasse, leading to improved performance and growth of sugarcane seedlings.

Statistical analysis indicated that bacterial treatments and incubation time significantly affect dehydrogenase enzyme activity in sand dunes. B. licheniformis strain 1D1 and S. pasteurii exhibited the highest activity, respectively. The increase in dehydrogenase activity signifies a rise in microbial population and soil ecosystem dynamics. Dehydrogenases are important as indicators for assessing microbial activity in soil, and their activity has been documented in sandy soils. During the incubation period, dehydrogenase activity showed a downward trend due to the depletion of carbon sources.

The highest urease activity was observed with S. pasteurii and B. licheniformis strain 1S5 in neutral vinasse combined with calcium chloride and urea. Urease activity showed a decreasing trend from the first to the fifth week. S. pasteurii is one of the most common urease-producing bacteria, and urease activity has also been reported in B. licheniformis RC636. In this study, higher urease activity in sand dunes was noted when isolates grown in neutral vinasse, as these isolates prefer a pH higher than acidic. Urease activity was greater in treatments with urea and calcium chloride, leading to the production of ammonia and carbonate and the precipitation of calcium carbonate. The declining trend in enzyme activity was associated with cellular aging and the salinity of the vinasse environment.

Conclusions

The study results indicate that indigenous isolates performed better in tests, and selecting isolates with lower urease activity but a slower release rate promotes more effective bonding between particles (like sand). Field-scale investigations could yield even better results.

Author Contributions

Negin Pirhadi: Data collection, data analysis and interpretation, writing the original draft.

Habib Nadian: project administration, reviewing and editing the manuscript.

Bijan Khalili moghadam: Contribution to experimental design, reviewing and editing the manuscript, supervision,

Hossein Motamedi: Conceptualization, methodology, providing resources, reviewing and editing the manuscript,

 All authors have read and agreed to the published version of the manuscript. All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

This work is part of the doctoral dissertation of [Negin Pirhadi]. The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the Department of Soil Science, Faculty of Agriculture, Agricultural Science and Natural Resources University of Khuzestan, Ahvaz, Iran.

The authors would like to thank all participants of the present study.

Ethical considerations

The authors refrained from engaging in data fabrication, falsification, plagiarism, and any form of misconduct.

Conflict of interest

The author does not declare any conflicts of interest.

Abdelhamid, M. A., Meligy, A. M., Yeo, K. B., Lee, C. S., & Pack. S. P. (2020). Silaffin-3-derived pentalysine cluster as a new fusion tag for one-step immobilization and purification of recombinant Bacillus subtilis catalase on bare silica particles. International journal of biological macromolecules, 159, 1103-1112.
Bandyopadhyay S, & Kumar Maiti S. (2021). Different soil factors influencing dehydrogenase activity in mine degraded lands—state-of-art review. Water, Air, & Soil Pollution, 232(9), 1-10.
Burbank, M. B., Weaver, T. J., Green, T. L., Williams, B. C., & Crawford, R. L. (2011). Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiology Journal, 28(4), 301-312.
Burbank, M., Weaver, T., Lewis, R., Williams, T., Williams, B., & Crawford, R. (2013). Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria. Journal of Geotechnical and Geoenvironmental Engineering, 139(6), 928-936.
Çakmakçı, R., Haliloglu, K., Türkoğlu, A., Özkan, G., Kutlu, M., Varmazyari, A., Molnar, Z., Jamshidi, B., Pour-Aboughadareh, A. & Bocianowski, J. (2023). Effect of different Plant Growth-Promoting Rhizobacteria on biological soil properties, growth, yield and quality of oregano (Origanum onites L.). Agronomy, 13(10), 1-17.
Carter, M. S., Tuttle, M. J., Mancini, J. A., Martineau, R., Hung, C. S., & Gupta, M. K. (2023). Microbially induced calcium carbonate precipitation by Sporosarcina pasteurii: a case study in optimizing biological CaCO3 precipitation. Applied and Environmental Microbiology, 89(8), 1-17.
Chabot, M., Morales, E., Cummings, J., Rios, N., Giatpaiboon, S., & Mogul, R. (2020). Simple kinetics, assay, and trends for soil microbial catalases. Analytical Biochemistry, 610, 1-11.
De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological engineering36(2), 118-136.
Ferreira, L. F. R., Torres, N. H., de Armas, R. D., Fernandes, C. D., da Silva Vilar, D., Aguiar, M. M., Pompeo, G. B., Monteiro, R. T. R., Iqbal, H. M. N., Bilal, M., Bharagava, R. N. (2020). Fungal lignin-modifying enzymes induced by vinasse mycodegradation and its relationship with oxidative stress. Biocatalysis and Agricultural Biotechnology, 27, 1-9.
Graddy, C. M., Gomez, M. G., DeJong, J. T., & Nelson, D. C. (2021). Native bacterial community convergence in augmented and stimulated ureolytic MICP biocementation. Environmental Science & Technology, 55(15), 10784-10793.
Gu, P., Ma, Q., Zhao, S., Li, Q., & Gao, J. (2023). Alanine dehydrogenases from four different microorganisms: Characterization and their application in L-alanine production. Biotechnology for Biofuels and Bioproducts, 16(1), 1-16.
Harkes, M. P., Van Paassen, L. A., Booster, J. L., Whiffin, V. S., & van Loosdrecht, M. C. (2010). Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36(2), 112-117.
Imran, M. A., Kimura, S., Nakashima, K., Evelpidou, N., & Kawasaki, S. (2019). Feasibility study of native ureolytic bacteria for biocementation towards coastal erosion protection by MICP method. Applied Sciences, 9(20), 1-15.
Irfan, M. F., Hossain, S. M. Z., Khalid, H., Sadaf, F., Al-Thawadi, S., Alshater, A., Hossain. M. M. & Razzak, S. A. (2019). Optimization of bio-cement production from cement kiln dust using microalgae. Biotechnology Reports, 23, 1- 10.
Johnson J L, & Temple K L. (1964). Some variables affecting the measurement of “catalase activity” in soil. Soil Science Society of America Journal, 28(2), 207-209.
Kaczyńska, G., Borowik, A., & Wyszkowska, J. (2015). Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air, & Soil Pollution, 226, 1-11.
Kim, G., Kim, J., & Youn, H. (2018). Effect of temperature, pH, and reaction duration on microbially induced calcite precipitation. Applied Sciences, 8(8), 1-10.
Koçak, B. (2020). Importance of urease activity in soil. In Proceedings of the International Scientific and Vocational Studies Congress–Science and Health, 12, 51-60.
Konstantinou, C., Wang, Y., Biscontin, G., & Soga, K. (2021). The role of bacterial urease activity on the uniformity of carbonate precipitation profiles of bio-treated coarse sand specimens. Scientific ReportsReports, 11(1), 1-17.
Kumari, J. A., Rao, P. C., Padmaja, G., & Madhavi, M. (2017). Effect of physico-chemical properties on soil enzyme urease activity in some soils of Ranga reddy district of Telangana State, India. International Journal of Current Microbiology and Applied, 6, 1708-1714.
Leeprasert, L., Chonudomkul, D., & Boonmak, C. (2022). Biocalcifying potential of ureolytic bacteria isolated from soil for biocementation and material crack repair. Microorganisms, 10(5), 1-15.
Li, Q., Liang, J. H., He, Y. Y., Hu, Q. J., & Yu, S. (2014). Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, southwest China. Plant, Soil and Environment, 60(1), 15-20.
Lin, H., Suleiman, M. T., Brown, D. G., & Kavazanjian Jr, E. (2016). Mechanical behavior of sands treated by microbially induced carbonate precipitation. Journal of Geotechnical and Geoenvironmental Engineering142(2), 1-13.
Liu, P., Zhang, Y., Tang, Q., & Shi, S. (2021). Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochemical Engineering Journal166, 1-8.
Lo, H. F., Su, J. Y., Chen, H. L., Chen, J. C., & Lin, L. L. (2011). Biophysical studies of an NAD (P)+-dependent aldehyde dehydrogenase from Bacillus licheniformis. European Biophysics Journal. 40, 1131-1142.
Mambu, S. M. (2014). Soil Dehydrogenase Activity: A Comparison Between the TTC and INT Method. A review. Jurnal Ilmiah Sains, 87-94.
Naeimi, M., Chu, J., Khosroshahi, M., & Zenouzi, L. K. (2023). Soil stabilization for dunes fixation using microbially induced calcium carbonate precipitation. Geoderma429, 1-12.
Navnage, N. P., Patle, P. N., & Ramteke, P. R. (2018). Dehydrogenase activity (DHA): Measure of total microbial activity and as indicator of soil quality. International Journal of Chemical Studies, 6(1), 456-458.
Nayanthara, P. G. N., Dassanayake, A. B. N., Nakashima, K., & Kawasaki, S. (2019). Microbial induced carbonate precipitation using a native inland bacterium for beach sand stabilization in nearshore areas. Applied Sciences, 9(15), 1-24.
Ni, J., Tokuyama, S., Sogabe, A., Kawamura, Y., & Tahara, Y. (2001). Cloning and high expression of catalase gene from Bacillus sp. TE124. Journal of Bioscience Bioscience and Bioengineering, 91(4), 422-424.
Nikseresht, F., Landi, A., Sayyad, G., Ghezelbash, G. R., & Schulin, R. (2020). Sugarecane molasse and vinasse added as microbial growth substrates increase calcium carbonate content, surface stability and resistance against wind erosion of desert soils. Journal of Environmental Environmental Management, 268, 1-8.
Oualha, M., Bibi, S., Sulaiman, M., & Zouari, N. (2020). Microbially induced calcite precipitation in calcareous soils by endogenous Bacillus cereus, at high pH and harsh weather. Journal of Environmental Management257, 1-10.
Paar, A., Costa, S., Tzanov, T., Gudelj, M., Robra, K. H., Cavaco-Paulo, A., & Gübitz, G. M. (2001). Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents. Journal of Biotechnology, 89(2-3), 147-153.
Pei, D., Liu, Z., Wu, W., & Hu, B. (2021). Transcriptome analyses reveal the utilization of nitrogen sources and related metabolic mechanisms of Sporosarcina pasteurii. PLoS One, 16(2), 1-22.
Pirhadi, N. (2024). Isolation of native bacteria and evaluation of their ability to produce Biocement for sand stabilization of southwestern of Iran (Doctoral dissertation). Supervised by Habiballah Nadian and Bijan Khalilimoghadam, Agricultural Sciences and Natural Resources University of Khuzestan, Faculty of Agriculture, Ahvaz. (In Persian).
Pirhadi, N., Nadian, H., Khalilimoghadam, B., & Motamedi, H. (2024). The effect of vinasse as a carbon source on the activity of urease-producing bacteria in the microbially induced calcite precipitation (MICP) approach. Desert29(1), 53-70.
Possignolo-Vitti, N. V., Bertoncini, E. I., & Vitti, A. C. (2017). Decomposition of the organic matter of natural and concentrated vinasse in sandy and clayey soils. Water Science and Technology. 76(3): 728-738.
Rajasekar, A., Zhao, C., Wu, S., Murava, R. T., & Wilkinson, S. (2024). Synergistic biocementation: harnessing Comamonas and Bacillus ureolytic bacteria for enhanced sand stabilization. World Journal of Microbiology and Biotechnology40(7), 1-15.
Schinner, F., Öhlinger, R., Kandeler, E., & Margesin, R. eds. (2012). Methods in soil biology. New York: Springer Science & business media.
Sen, A., Ozkarsli, M., Dogan, N. M., Semiz, A., & Arslan, S. (2011). Cloning, expression, purification and characterization of Bacillus licheniformis catalase from Pamukkale Hot Springs. Current Opinion in Biotechnology, (22), 1-39.
Shaeer, A., Aslam, M., & Rashid, N. (2021). Structural and functional analyses of a novel manganese-catalase from Bacillus subtilis R5. International Journal of Biological Macromolecules, 180, 222-233.
Sheikhloo, F., & Rasouli Sadaghiani, M. (2016). Effects of different agronomic and forest land uses on soil enzyme activity. Iranian Journal of Soil and Water Research47(1), 205-216. (In Persian).
Sohail, M. G., Al Disi, Z., Zouari, N., Al Nuaimi, N., Kahraman, R., Gencturk, B., Rodrigues, D. F. & Yildirim, Y. (2022). Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Construction and Building Materials, 328, 1-10.
Tang, C. S., Yin, L. Y., Jiang, N. J., Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79, 1-23.
Torres, M. A., Valdez, A. L., Angelicola, M. V., Raimondo, E. E., Pajot, H. F., & Nieto-Peñalver, C. G. (2023). Vinasse as a substrate for inoculant culture and soil fertigation: Advancing the circular and green economy. Science of The Total Environment, 887, 1-10.
Trasar-Cepeda, C., Camiña, F., Leirós, M. C., & Gil-Sotres, F. (1999). An improved method to measure catalase activity in soils. Soil Biology and Biochemistry, 31(3), 483-485.
Wang Y. D., YunChuan, M., WeiHao, W., YangRui, L. Y., & YanPing, Y. (2006). Effect of vinasse irrigation on the activity of three enzymes and agronomic characters at seedling stage of sugarcane. Journal Sugar Tech, 8, 264–267.
Wang, X., Zhu, J., Wei, H., Ding, Z., Li, X., Liu, Z., Wang, H. & Wang, Y. (2023). Biological control efficacy of Bacillus licheniformis HG03 against soft rot disease of postharvest peach. Food Control, 145, 1-27.
Whiffin, V. S., Van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5), 417-423.
Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 1-11.
Yuan, F., Yin, S., Xu, Y., Xiang, L., Wang, H., Li, Z., Fan, K., & Pan, G. (2021). The richness and diversity of catalases in bacteria. Frontiers in Microbiology, 12, 1-11.
Zhang, T., Wan, S., Kang, Y., & Feng, H. (2014). Urease activity and its relationships to soil physiochemical properties in a highly saline-sodic soil. Journal of Soil Science and Plant Nutrition, 14(2), 304-315.