ارزیابی تاثیر آسیب‌پذیری نظام حکمرانی آب در برابر مخاطرات محیطی(مطالعه حوضه آبریز کارون بزرگ در استان خوزستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مدیریت و توسعه کشاورزی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران

چکیده

پژوهش حاضر با هدف ارزیابی آسیب‌پذیری نظام حکمرانی آب در برابر مخاطرات محیطی در حوضه آبریز کارون بزرگ استان خوزستان، با بهره‌گیری از چارچوب تلفیقی DPSIR-PLS انجام شد. داده‌ها از طریق تحلیل مصاحبه‌های تخصصی با استفاده از نرم‌افزارMAXQDA گردآوری و کدگذاری شدند و پس از دسته بندی در چارچوب DPSIR با روش مدل‌سازی معادلات ساختاری حداقل مربعات جزئی(PLS-SEM)  تحلیل شدند. برای اطمینان از کفایت حجم نمونه، از نرم‌افزار G*Power استفاده شد. در نهایت 90 پرسشنامه معتبر از کارشناسان جمع‌آوری شد. نتایج نشان داد که ساختار روابط در مدل اولیه به‌صورت خطی از نیروی محرکه به پاسخ بود، اما در مدل توسعه یافته روابط بازگشتی و چرخه‌ای میان پاسخ و سایر مؤلفه‌ها ایجاد شد. همچنین مؤلفه پاسخ تأثیر منفی معنادار بر (نیرو: 610/0-، فشار: 333/0-، وضعیت: 266/0-، اثر: 373/0-) داشت که نشان‌دهنده ضعف عملکرد پاسخ‌های نهادی در کنترل چرخه آسیب‌پذیری است. در مدل اولیه مؤلفه اثر با بیشترین ضریب مسیر (828/0) نقش اصلی را داشت، اما در مدل توسعه یافته با وارد شدن پاسخ‌ها، مؤلفه نیروی محرکه به عنوان محرک اصلی با ضریب مسیر (872/0) برجسته شد. این جابه‌جایی اهمیت نشان‌دهنده آن است که در شرایط ضعف پاسخ‌های نهادی، تأثیر عوامل انسانی و اقلیمی به‌عنوان نیروی محرکه برجسته‌تر و تعیین‌کننده‌تر می‌شود و چرخه آسیب‌پذیری شکل پایدارتری به خود می‌گیرد. مقادیر R² مؤلفه‌ها بین 372/0 تا 704/0 قدرت تبیینی متوسط تا بسیار بالا مدل را نشان می‌دهد. بر این اساس، بازطراحی پاسخ‌ها از طریق اصلاحات نهادی، برنامه‌ریزی فضایی، نوسازی زیرساخت‌ها و حمایت از کشاورزی پایدار پیشنهاد می‌شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of the Impact of Water Governance System Vulnerability to Environmental Hazards (A Case Study of the Karun-e Bozorg Basin in Khuzestan Province)

نویسندگان [English]

  • Mahin Farjam
  • Khalil Kalantari
  • Ali Asadi
  • Ali Akbar Barati
Department of Agricultural Management and Development, Faculty of Agriculture, University of Tehran, Iran
چکیده [English]

The present study aimed to assess the vulnerability of the water governance system to environmental hazards in the Karun Great Basin, Khuzestan Province, using an integrated DPSIR-PLS framework. Data were collected through expert interviews, coded and analyzed using MAXQDA software, and subsequently categorized within the DPSIR framework. Structural Equation Modeling with Partial Least Squares (PLS-SEM) was applied for analysis. To ensure adequate sample size, G*Power software was employed, resulting in 90 valid questionnaires collected from experts. The results revealed that in the initial model, the structure of relationships followed a linear pattern from driving forces to responses. However, in the extended model, feedback loops and cyclical relationships emerged between the response component and other elements. The response component showed significant negative effects on driving forces (–0.610), pressures (–0.333), state (–0.266), and impacts (–0.373), indicating the weak performance of institutional responses in controlling the vulnerability cycle. In the initial model, the impact component played the main role with the highest path coefficient (0.828), but in the extended model, with the inclusion of responses, the driving force component became the main driver with a path coefficient of (0.872). This shift highlights that under weak institutional responses, human and climatic factors as driving forces become more prominent and decisive, leading to a more stable vulnerability cycle. The R² values of the components ranged from 0.372 to 0.704, indicating moderate to very high explanatory power of the model. Accordingly, it is recommended that responses be redesigned through institutional reforms, spatial planning, infrastructure modernization, and support for sustainable agriculture.

کلیدواژه‌ها [English]

  • Vulnerability
  • Environmental Hazards
  • Water Governance System
  • Karun River Basin

Introduction

This research investigates the vulnerability of the water governance system to environmental hazards, focusing on the Karun River Basin in Khuzestan Province, Iran. Water governance in this region faces increasing challenges due to environmental changes and ineffective institutional responses. While various studies address water resource management, few adopt an integrated approach combining qualitative and quantitative methods. To fill this gap, the study applies an integrated DPSIR (Drivers, Pressures, State, Impact, Response) framework alongside Partial Least Squares (PLS) modeling to explore key factors affecting governance vulnerability. The study’s significance lies in its potential to inform environmental planning, public policy, and decision-making for sustainable water management in vulnerable regions. The target audience includes policymakers, environmental managers, researchers, and stakeholders in water governance.

Method:

A mixed-methods design was used, integrating qualitative and quantitative approaches to comprehensively examine water governance challenges in Khuzestan Province. The qualitative phase involved semi-structured expert interviews, which guided the development of a structured questionnaire. The quantitative phase consisted of administering this questionnaire to a wider expert sample for statistical analysis.

Sampling Procedures:

The planned sample included all identified experts (N=110), with 90 valid responses obtained. Power analysis via G*Power confirmed this sample size was sufficient to detect medium to large effect sizes with acceptable confidence. No interim analyses or stopping rules were applied.

Sample Size, Power, and Precision:

The intended sample size included all identified experts (N=110), with an achieved sample size of 90 valid responses. Power analysis conducted using G*Power software confirmed that this sample size was sufficient to detect medium to large effect sizes with an acceptable confidence level. No interim analyses or stopping rules were applied during data collection.

Mixed Methods Research:

The mixed-methods approach leveraged the strengths of both qualitative and quantitative data. Qualitative data were thematically analyzed using MAXQDA to inform the questionnaire design within the DPSIR framework. Quantitative data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM), facilitating an integrated assessment of governance vulnerabilities and institutional dynamics.

Results:

Findings revealed strong causal relationships among DPSIR components. Human and natural pressures significantly influenced the status of water resources, resulting in substantial negative impacts. Drivers indirectly affected other components through pressures. Institutional responses, although linked to pressures, were found ineffective and occasionally exerted adverse effects on status and impacts.

Conclusion:

This research highlights the vulnerability of the water governance system to environmental hazards and the inefficiency of current institutional responses. It recommends revising governance models, strengthening infrastructure, adopting innovative technologies, and enhancing integrated water resources management. Future studies should incorporate more diverse datasets, additional social and environmental factors, and apply nonlinear and comparative analyses to deepen understanding of system dynamics.

Author Contributions:

Conceptualization by Ali Akbar Barati; methodology by Khalil Kalantari; software by Ali Akbar Barati; validation by Ali Asadi; data collection, data organization, preparation of charts and figures, and writing—original draft preparation by Mahin Farjam; writing—review and editing by Khalil Kalantari; supervision and project administration by Ali Asadi. All authors have read and approved the final version of the manuscript.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgements

The authors express their sincere gratitude to all individuals who participated in this study.

Ethical Considerations

The authors adhered to ethical research standards and avoided data fabrication, falsification, plagiarism, and any form of research misconduct.

Conflict of Interest

The author declares that there are no conflicts of interest related to this study.

Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268–281.
Afshin, Y. (1994). Rivers of Iran (Vol. 1). Ministry of Energy, Mahab Ghods Consulting Engineers, pp. 255–257.(In Persian).
Agramont, A., Nora, v. C., Ann, v. G., & and Craps, M. (2022). Integrating spatial and social characteristics in the DPSIR framework for the sustainable management of river basins: case study of the Katari River Basin, Bolivia. Water International, 47(1), 8–29.
Allen, W. (2022). Using a DPSIR framework to support natural resource management and policy. Learning for Sustainability.
Arshadi, M., & Bagheri, A. (2013). Analysis of the Karun Basin water resources system from a sustainability perspective using a system dynamics approach. Iranian Journal of Water Resources Research, 9(3), 1–13. (In Persian).
Banedj Shafiei, Sh., Seid Akhlaghi, S. J., Seid Akhlaghi, S. A., & Ghasemi Arian, Y. (2020). Assessing long-term water management in agricultural activities (case study: Khuzestan Province). Iran Nature, 5(2), 45–51.(In Persian).
Benson, D., Gain, A. K., & Rouillard, J. J. (2015). Water governance in a comparative perspective: from IWRM to a'nexus' approach? Water alternatives, 8(1), 756–773.
Borgomeo, E., Farmer, C. L., & Hall, J. W. (2015). Numerical rivers: A synthetic streamflow generator for water resources vulnerability assessments. Water Resources Research, 51(7), 5382–5405.
Cai, J., Varis, O., & Yin, H. (2017). China's water resources vulnerability: A spatio-temporal analysis during 2003–2013. Journal of Cleaner Production, 142, 2901–2910.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295–336.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
Cosgrove, W. J., & Rijsberman, F. R. (2014). World water vision: making water everybody's business. Routledge.
Cutter, S. L., & Finch, C. (2008). Temporal and spatial changes in social vulnerability to natural hazards. Proceedings of the national academy of sciences, 105(7), 2301–2306.
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their application. Cambridge university press.
Dijkstra, T. K. (2010). Latent variables and indices: Herman Wold’s basic design and partial least squares. In V. Esposito, W. W. Chin, J. Henseler, & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (Springer handbooks of computational statistics series) (Vol. 2, pp. 23–46). Springer.
Dijkstra, T. K., & Henseler, J. (2015). Consistent partial least squares path modeling. MIS quarterly, 39(2), 297–316.
Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., & Edmonds, J. (2021). Evaluating the economic impact of water scarcity in a changing world. Nature communications, 12(1), 1915.
Eakin, H., & Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems. Annu. Rev. Environ. Resour., 31(1), 365–394.
Eslami, R., & Rahimi, A. (2019). Water policy-making and crisis in Iran. Strategic and Macro Policies, 7(27), 410–435. (In Persian).
Ficklin, D. L., Null, S. E., Abatzoglou, J. T., Novick, K. A., & Myers, D. T. (2022). Hydrological intensification will increase the complexity of water resource management. Earth's Future, 10(3), e2021EF002487.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39–50.
Galaz, V. (2007). Water governance, resilience and global environmental change–a reassessment of integrated water resources management (IWRM). Water Science and Technology, 56(4), 1–9.
Gordon, B. L., Koebele, E. A., Rego, J. J., Harpold, A. A., & Ajami, N. K. (2024). Adaptable and comprehensive vulnerability assessments for water resources systems in a rapidly changing world. Journal of Environmental Management, 352, 119958.
Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2021). Evaluation of an urban drainage system and its resilience using remote sensing and GIS. Remote Sensing Applications: Society and Environment, 23, 100601.
Guptha, G. C., Swain, S., Al-Ansari, N., Taloor, A. K., & Dayal, D. (2022). Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India. Urban Climate, 41, 101075.
Hair, J. J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer Nature.
Hair, J., Ringle, C., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19, 139–151.
Hari, S., Sepehr, A., & Behniafar, A. (2015). Preparing the karst vulnerability map of the Akhlamad Basin using the ELECTRE III model. In Proceedings of the 34th International Geological Congress, Iran. (In Persian).
He, C., Liu, Z., Wu, J., Pan, X., Fang, Z., Li, J., & Bryan, B. A. (2021). Future global urban water scarcity and potential solutions. Nature communications, 12(1), 4667. .
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115–135.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The Use of Partial Least Squares Path Modeling in International Marketing (R. R. Sinkovics & P. N. Ghauri, Eds. Vol. 20). Emerald Group Publishing Limited.
Hosseini-Zare, N., Gholami, A., Panahpour, E., & Jafarnejadi, A. (2014). Pollution load assessment in the soil and water resources: a case study in Karun river drainage basin, southwest of Iran. European Online Journal of Natural and Social Sciences, 3(3 (s)), pp. 427–434.
Huang, Y., & Cai, M. (2009). Methodologies Guidelines: Vulnerability Assessment of Freshwater Resources to Environmental Change. UNEP.
IPCC. (2022a). Chapter 4: Land degradation. In Ipcc (Ed.), Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge University Press.
IPCC. (2022b). Fact sheets /Climate change 2022: Impacts, adaptation and vulnerability. Intergovernmental Panel on Climate Change.
Iran Water Resources Management Company. (2004). Guidelines and regulations for classification and coding of river basins and study areas at the national level (p. 5). Tehran: Iran Water Resources Management Company. Retrieved August 1, 2017. (In Persian).
Kaushik, J., Kumar, V., Garg, A. K., Dubey, P., Tripathi, K. M., & Sonkar, S. K. (2021). Bio-mass derived functionalized graphene aerogel: A sustainable approach for the removal of multiple organic dyes and their mixtures. New Journal of Chemistry, 45(20), 9073–9083.
Khan, S. U., Cui, Y., Khan, A. A., Ali, M. A. S., Khan, A., Xia, X., Liu, G., & Zhao, M. (2021). Tracking sustainable development efficiency with human-environmental system relationship: An application of DPSIR and super efficiency SBM model. Science of The Total Environment, 783, 146959.
Khuzestan Water and Power Authority. (2000). Assessment of pollutants in the Karun River. Water Quality Assessment Division. (In Persian).
Khuzestan Water and Power Authority. (2001). Salinization of Abadan water. Water Resources Operation Office. (In Persian).
Kitamori, K., Manders, T., Dellink, R., & Tabeau, A. (2012). OECD environmental outlook to 2050: the consequences of inactio.
Kristiadi, Y., Sari, R. F., Herdiansyah, H., Hasibuan, H. S., & Lim, T. H. (2022)Developing DPSIR framework for managing climate change in urban areas: A case study in Jakarta, Indonesia. Sustainability, 14(23), 15773.
Krogh, S. A., Scaff, L., Sterle, G., Kirchner, J., Gordon, B., & Harpold, A. (2021). Diel streamflow cycles suggest more sensitive snowmelt-driven streamflow to climate change than land surface modeling. Hydrology and Earth System Sciences Discussions, 2021, 1–41.
Lane, R. A., & Kay, A. L. (2021). Climate change impact on the magnitude and timing of hydrological extremes across Great Britain. Frontiers in Water, 3, 684982.
Lewison, R. L., Rudd, M. A., Al-Hayek, W., Baldwin, C., Beger, M., Lieske, S. N., Jones, C., Satumanatpan, S., Junchompoo, C., & Hines, E. (2016). How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environmental Science & Policy, 56, 110–119.
Luers, A. L. (2005). The surface of vulnerability: an analytical framework for examining environmental change. Global environmental change, 15(3), 214–223.
Mahab Consulting Engineers. (2005). Comprehensive water resources adaptation plan studies in the Karun River Basin. Ministry of Energy, Iran Water Resources Management Company. Retrieved from https://jamab.ir. (In Persian).
Maja, M. M., & Ayano, S. F. (2021). The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. Earth Systems and Environment, 5(2), 271–283.
Malekmohammadi, B., & Jahanishakib, F. (2017). Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecological Indicators, 82, 293–303.
Maxim, L., Spangenberg, J. H., & O'Connor, M. (2009). An analysis of risks for biodiversity under the DPSIR framework. Ecological Economics, 69(1), 12–23.
Nasarnia, F., Zibaei, M., & Bakhshoudeh, M. (2018). Vulnerability of farmers in the Bakhtegan Basin before and after drought occurrence: An agricultural economics approach. Economics and Agriculture, 12(3), 7–47. (In Persian).
Nathwani, J., Lu, X., Wu, C., Fu, G., & Qin, X. (2019). Quantifying security and resilience of Chinese coastal urban ecosystems. Science of The Total Environment, 672, 51–60.
Ness, B., Anderberg, S., & Olsson, L. (2010). Structuring problems in sustainability science: The multi-level DPSIR framework. Geoforum, 41(3), 479–488.
Niemeijer, D., & de Groot, R. S. (2008). Framing environmental indicators: moving from causal chains to causal networks. Environment, Development and Sustainability, 10(1), 89–106.
Ofogh, A. R. E., Dorche, E. E., Birk, S., & Bruder, A. (2023). Effect of seasonal variability on the development and application of a novel Multimetric Index based on benthic macroinvertebrate communities–A case study from streams in the Karun river basin (Iran). Ecological Indicators, 146, 109843.
Ostrom, E. (2009). Understanding institutional diversity. Princeton university press.
Pahl-Wostl, C. (2017). An evolutionary perspective on water governance: From understanding to transformation. Water Resources Management, 31, 2917–2932.
Pakmehr, S., Yazdanpanah, M., & Baradaran, M. (2020). How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran. Land Use Policy, 99, 104798.
Partnership, G. W. (2004). Catalyzing change: A handbook for developing integrated water resources management (IWRM) and water efficiency strategies. Global Water Partnership Secretariat.
Pegram, G., Li, Y., & Le Quesne, T. (2013). River basin planning: Principles, procedures and approaches for strategic basin planning. UNESCO.
Qiu, J., Shen, Z., & Xie, H. (2023). Drought impacts on hydrology and water quality under climate change. Science of The Total Environment, 858, 159854.
Rogers, P., & Hall, A. W. (2003). Effective water governance (Vol. 7). Global water partnership Stockholm.
Rostam-Asl, F., Saadeddin, A., Oungh, M., & Armin, M. (2020). Assessing the vulnerability of river systems in the Jarahi River Basin. Water and Soil Conservation Research, 27(2), 47–68. (In Persian).
Salehi, M. (2022). Global water shortage and potable water safety; Today’s concern and tomorrow’s crisis. Environment International, 158, 106936.
Sun, C., Wu, Y., Zou, W., Zhao, L., & Liu, W. (2018). A rural water poverty analysis in China using the DPSIR-PLS model. Water resources management, 32, 1933–1951.
Swain, S., Kumar Mishra, S., & Pandey, A. (2020). Assessment of meteorological droughts over Hoshangabad district, India. IOP Conference Series: Earth and Environmental Science, 491(1), 012012.
Swain, S., Sharma, I., Mishra, S. K., Pandey, A., Amrit, K., & Nikam, V. (2020). A Framework for Managing Irrigation Water Requirements under Climatic Uncertainties over Beed District, Maharashtra, India. In World Environmental and Water Resources Congress 2020 (pp. 1–8).
Taye, M. T., Willems, P., & Block, P. (2015). Implications of climate change on hydrological extremes in the Blue Nile basin: A review. Journal of Hydrology: Regional Studies, 4, 280–293.
Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. science, 289(5477), 284–288.
Wold, H. (1975). Path models with latent variables: The NIPALS approach. In H. M. Blalock, A. Aganbegian, F. M. Borodkin, R. Boudon, & V. Capecchi (Eds.), Quantitative Sociology: International Perspectives on Mathematical and Statistical Modeling (pp. 307–357). Academic Press.
Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce: Theory and application of PLS. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of Econometric Models (pp. 47–74). Academic Press.
Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observations: Part II (pp. 1–54). North-Holland.
Xia, C., & Zhai, G. (2023). Territorial spatial vulnerability assessment based on PSO-BP neural network: A case study in Shenzhen, China. Ecological informatics, 75, 102088.
Xiong, J., & Yang, Y. (2024). Climate Change and Hydrological Extremes. Current Climate Change Reports, 11(1), 1.
Xu, C., Hu, X., Wang, X., Liu, Z., Tian, J., & Ren, Z. (2024). Spatiotemporal variations of eco-environmental vulnerability in Shiyang River Basin, China. Ecological Indicators, 158, 111327.
Zhang, H., Liu, J., & Guo, Q. (2024). Evaluation of rural human settlements in China based on the combined model of DPSIR and PLS-SEM. Environmental Impact Assessment Review, 108, 107617.
Zhao, C., Brissette, F., Chen, J., & Martel, J.-L. (2020). Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology, 584, 124316.
Zhao, R., Fang, C., Liu, H., & Liu, X. (2021). Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustainable Cities and Society, 72, 102997
Zhao, Y.-c., Zhang, Q.-p., Zhang, H.-r., & Huang, S. (2024). Spatio-temporal patterns and driving factors of green development level in alpine meadow regions: A case study in Gannan Tibetan Autonomous Prefecture. Ecological Indicators, 168, 112751