Ahmad, N., & Nath, V. (2024). Evaluating Nine Machine Learning Algorithms for GaN HEMT Small Signal Behavioral Modeling through K-fold Cross-Validation.
Engineering, Technology & Applied Science Research,
14(4), 15784-15790.
https://doi.org/10.48084/etasr.7726
Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., ... & Sadegh, M. (2022). Groundwater level modeling with machine learning: a systematic review and meta-analysis.
Water, 14(6), 949.
https://doi.org/10.3390/w14060949
Almasi, A., Fatemi, S. E., & Eghbalzadeh, A. (2024). The prediction of monthly rainfall in Kermanshah Synoptic Station under the social-economic scenarios of the sixth climate change report. Advanced Technologies in Water Efficiency, 4(1), 40-64.
https://doi.org/10.22126/atwe.2024.10245.1097 (In Persian).
Amiraslani, F., & Caiserman, A. (2020).
Contemporary water resource management and its role in tackling land degradation and desertification in Iran. Standing up to Climate Change: Creating Prospects for a Sustainable Future in Rural Iran, Springer Cham, 65-87.
https://doi.org/10.1007/978-3-030-50684-1_4
Askari, J. & Egdernezhad, A. (2022). Groundwater modeling using artificial intelligence methods (Case study: Dezful-Andimeshk plain). Journal of Research in Environmental Health, 8(2), 160-171. doi: 10.22038/jreh.2022.61396.1457 (In Persian).
Bamal, A., Uddin, M. G., & Olbert, A. I. (2024). Harnessing machine learning for assessing climate change influences on groundwater resources: a comprehensive review.
Heliyon, 10 (17), e37073.
https://doi.org/10.1016/j.heliyon.2024.e37073
Bhadani, V., Singh, A., Kumar, V., & Gaurav, K. (2023, May).
Machine learning models to predict groundwater level in a Semi-arid river catchment, Central India. In EGU General Assembly Conference Abstracts (pp. EGU-12629).
https://doi.org/10.5194/egusphere-egu23-12629
Biswas, A., Sarkar, S., Das, S., Dutta, S., Roy Choudhury, M., Giri, A., Bera, B., Bag, K., Mukherjee, B., Banerjee, K., Gupta, D., & Paul, D. (2025). Water scarcity: A global hindrance to sustainable development and agricultural production – A critical review of the impacts and adaptation strategies.
Cambridge Prisms: Water, 3, e4.
https://doi.org/10.1017/wat.2024.16
Boo, K. B. W., El-Shafie, A., Othman, F., Khan, M. M. H., Birima, A. H., & Ahmed, A. N. (2024). Groundwater level forecasting with machine learning models: A review.
Water Research, 252, 121249.
https://doi.org/10.1016/j.watres.2024.121249
Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P., & Vuilleumier, L. (2020). Effects of the prewhitening method, the time granularity, and the time segmentation on the Mann–Kendall trend detection and the associated Sen's slope. Atmospheric measurement techniques, 13(12), 6945-6964.
Crossett, C. C., Hodgkins, G. A., Menk, H., Dupigny‐Giroux, L. A. L., Dudley, R., Lemcke‐Stampone, M., & Hammond, J. (2023). Groundwater recharge in northern New England: Meteorological drivers and relations with low streamflow.
Hydrological Processes, 37(3), e14832.
https://doi.org/10.1002/hyp.14832
Darabi Cheghabaleki, S., Fatemi, S. E., & Hafezparast Mavadat, M. (2024). Enhancing spatial streamflow prediction through machine learning algorithms and advanced strategies. Applied Water Science, 14(6), 110.
https://doi.org/10.1007/s13201-024-02154-x
Das, S., Datta, P., Sharma, D., & Goswami, K. (2022). Trends in temperature, precipitation, potential evapotranspiration, and water availability across the teesta river basin under 1.5 and 2 C temperature rise scenarios of CMIP6. Atmosphere, 13(6), 941, Doi:
https://doi.org/10.3390/atmos13060941
Davoudi Moghaddam, D., Rahmati, O., Haghizadeh, A., & Kalantari, Z. (2020). A modeling comparison of groundwater potential mapping in a mountain bedrock aquifer: QUEST, GARP, and RF models.
Water, 12(3), 679.
https://doi.org/10.3390/w12030679
Elmotawakkil, A., Sadiki, A., & Enneya, N. (2024). Predicting groundwater level based on remote sensing and machine learning: a case study in the Rabat-Kénitra region.
Journal of Hydroinformatics, 26(10), 2639-2667.
https://doi.org/10.2166/hydro.2024.494
Farasati, M., Seyedian, M., & Fathaabadi, A. (2024). Predicting soil hydraulic conductivity using random forest, SVM, and LSSVM models.
Natural Resource Modeling, 37(4), e12407.
https://doi.org/10.1111/nrm.12407
Fatemi, S. E., & Parvini, H. (2022). The impact assessments of the ACF shape on time series forecasting by the ANFIS model. Neural Computing and Applications, 34(15), 12723-12736.
https://doi.org/10.1007/s00521-022-07140-5
Fatemi, S., Ghobadian, R. and Pakbin, M. (2018). Forecasting Groundwater Depth Using Time series Spectral Analysis. Water and Soil Science, 28(1), 145-158. https://water-soil.tabrizu.ac.ir/article_7600.html (In Persian).
Goodarzi, M. R., Bafrouei, H. B., & Vazirian, M. (2025). Insight into groundwater level prediction with feature effectiveness: comparison of machine learning and numerical methods.
Hydrology Research, 56(1), 74-92.
https://doi.org/10.2166/nh.2024.135
Gupta, S. K., Sahoo, S., Sahoo, B. B., Srivastava, P. K., Pateriya, B., & Santosh, D. T. (2024). Prediction of groundwater level changes based on machine learning technique in highly groundwater irrigated alluvial aquifers of south-central Punjab, India.
Physics and Chemistry of the Earth, 135, 103603.
https://doi.org/10.1016/j.pce.2024.103603
Hirko, D. B., Du Plessis, J. A., & Bosman, A. (2025). Review of machine learning and WEAP models for water allocation under climate change.
Earth Science Informatics, 18(3), 310.
https://doi.org/10.1007/s12145-025-01820-1
Igwebuike, N., Ajayi, M., Okolie, C., Kanyerere, T., & Halihan, T. (2025). Application of machine learning and deep learning for predicting groundwater levels in the west coast aquifer system, south africa.
Earth Science Informatics, 18(1), 1-18.
https://doi.org/10.1007/s12145-024-01623-w
Iqbal, M., Naeem, U. A., Ahmad, A., Ghani, U., & Farid, T. (2020). Relating groundwater levels with meteorological parameters using ANN technique.
Measurement, 166, 108163.
https://doi.org/10.1016/j.measurement.2020.108163
Khan, J., Lee, E., Balobaid, A. S., & Kim, K. (2023). A comprehensive review of conventional, machine leaning, and deep learning models for groundwater level (GWL) forecasting.
Applied Sciences, 13(4), 2743.
https://doi.org/10.3390/app13042743
Khoi, D. N., Sam, T. T., Chi, N. T. T., Linh, D. Q., & Nhi, P. T. T. (2022). Impact of future climate change on river discharge and groundwater recharge: a case study of Ho Chi Minh City, Vietnam. Journal of Water and Climate Change, 13(3), 1313-1325.
https://doi.org/10.2166/wcc.2022.379
Lal, A., Sharan, A., Sharma, K., Ram, A., Roy, D. K., & Datta, B. (2024). Scrutinizing different predictive modeling validation methodologies and data-partitioning strategies: new insights using groundwater modeling case study.
Environmental Monitoring and Assessment, 196(7), 623.
https://doi.org/10.1007/s10661-024-12794-w
Ma, Y., Koch, J., & Maxwell, R. M. (2024). Using random forests to explore the feasibility of groundwater knowledge transfer between the contiguous US and Denmark.
Environmental Research Communications, 6(12), 121005.
https://doi.org/10.1088/2515-7620/ad9b08
Madani, A., & Niyazi, B. (2023). Groundwater potential mapping using remote sensing and random forest machine learning model: A case study from lower part of Wadi Yalamlam, Western Saudi Arabia.
Sustainability, 15(3), 2772.
https://doi.org/10.3390/su15032772
Moeeni, H., Bonakdari, H., & Fatemi, S. E. (2017). Stochastic model stationarization by eliminating the periodic term and its effect on time series prediction. Journal of hydrology, 547, 348-364.
https://doi.org/10.1016/j.jhydrol.2017.02.012
Niroumand Fard, F., Khashei Siuki, A., Hashemi, S. R., & Ghorbani, K. (2023). Evaluation of the effect of scenarios in the 6th report of IPCC on the prediction groundwater level using the non-linear model of the input-output time series
. Environmental Monitoring and Assessment, 195(11), 1359.
https://doi.org/10.1007/s10661-023-11872-9
Norouzi, H. & Nadiri, A. (2018). Groundwater Level Prediction of Boukan Plain using Fuzzy Logic, Random Forest and Neural Network Models. Journal of Range and Watershed Managment, 71(3), 829-845. doi: 10.22059/jrwm.2018.68924 (In Persian).
Norouzi, H., & Shahmohammadi-Kalalagh, S. (2019). Locating groundwater artificial recharge sites using random forest: a case study of Shabestar region, Iran.
Environmental Earth Sciences, 78(13), 380.
https://doi.org/10.1007/s12665-019-8381-2
Nouri, M., Homaee, M., Pereira, L. S., & Bybordi, M. (2023). Water management dilemma in the agricultural sector of Iran: A review focusing on water governance.
Agricultural Water Management, 288, 108480.
https://doi.org/10.1016/j.agwat.2023.108480
Parvizi, Y., & Fatehi, S. (2024). Modeling and digital mapping of soil quality indicators in different land uses (a case study: Ravansar-Sanjabi Plain, Kermanshah).
Environmental Monitoring and Assessment, 196(2), 184.
https://doi.org/10.1007/s10661-024-12349-z
Poursalehi, F., KhasheiSiuki, A. & Hashemi, S. R. (2021). Investigating the performance of random forest algorithm in predicting water table fluctuations Compared with two models of decision tree and artificial neural network (Case study: unconfined aquifer of Birjand plain). Journal of Ecohydrology, 8(4), 961-974. doi: 10.22059/ije.2022.327263.1526 (In Persian).
Rabiee, M. and karami, H. (2022). Estimation of Temporal and Spatial Variations of Groundwater Level by Combining Intelligent Models and Geostatistical Methods (Semnan Plain). Irrigation and Water Engineering, 12(3), 220-242. doi: 10.22125/iwe.2022.146404 (In Persian).
Rizwan, A., Iqbal, N., Khan, A. N., Ahmad, R., & Kim, D. H. (2021). Toward effective pattern recognition based on enhanced weighted K-mean clustering algorithm for groundwater resource planning in point cloud.
IEEE Access, 9, 130154-130169.
https://doi.org/10.1109/ACCESS.2021.3111112
Saha, N. C., Mondal, J. K., & Banerjee, A. (2025). Applicability of random forest model for predicting groundwater table in Birbhum District, West Bengal India. In Recent Advancements in Computational Intelligence and Design Engineering (pp. 79-84). CRC Press.
Salimi, N., Faramarzi, M., Tavakoli, M., & Fathizad, H. (2023). Using machine learning algorithms for modeling groundwater resources in arid rangeland western Iran. Journal of Spatial Analysis Environmental Hazards, 10(3), 163-182. doi: 10.61186/jsaeh.10.3.163. (In Persian).
Sanchez, A. G., & Capurata, R. E. O. (2024). Assessment of Supervised Machine Learning Techniques for Predicting Groundwater Availability in Mexican Aquifers.
International Journal of Combinatorial Optimization Problems and Informatics, 15(4), 7.
https://doi.org/10.61467/2007.1558.2024.v15i4.498
Seraj Ebrahimi, R., Eslamian, S. and Zareian, M. J. (2022). Predicting the effects of climate change on groundwater resources using artificial intelligence methods (Case study: Talesh plain). Water and Irrigation Management, 12(3), 561-579. doi: 10.22059/jwim.2022.340171.975 (In Persian).
Shah, S. A., & Kiran, M. (2021). Mann-Kendall test: Trend analysis of temperature, rainfall, and discharge of Ghotki feeder canal in district Ghotki, Sindh, Pakistan.
Environment & Ecosystem Science (EES), 5(2), 137-142.
http://doi.org/10.26480/ees.02.2021.137.142
Sohrabi, M., Mohammadzadeh, H., & Eskandari, J. (2016, May). Quantitative assessment of groundwater resources in the Ravansar region, Kermanshah. The 2nd International Congress on Earth Sciences and Urban Development, Tabriz.
https://civilica.com/doc/526390 (In Persian).
Soltani, K. , Fatemi, S. E. , Masoompour Samakosh, J. and Hafezparast Mavadat, M. (2025). A Novel Method for Predicting Future Changes in Groundwater Level Using K-means and Random Forest Algorithms with CMIP6 Climate Data in the Eslamabad West Plain.
Iranian Journal of Soil and Water Research.
https://doi.org/10.22059/ijswr.2025.392467.669910 (In Persian).
Soltani, K., Masoompour Samakosh, J., Fatemi, S. E., & Hafezparast Mavadat, M. (2025). Sustainable Soil Moisture Prediction in the Eslamabad Plain: A Machine Learning Approach to Climate Model Selection and Downscaling.
Geography and Environmental Sustainability, 15(2), 43-61.
http://dx.doi.org/10.22126/ges.2025.11696.2832 (In Persian).
Soltani, M. , solaimani, K. , jallili, K. , Sadatinejad, S. J. and Shokrian, F. (2023). Investigating Alterations in the underground water level of Ravansar- Sanjabi Plain under CIMP5 climate scenarios.
Desert Ecosystem Engineering, 11(37), 71-84.
http://dx.doi.org/10.22052/deej.2023.248647.1001 (In Persian).
Soltani, M., solaimani, K., jallili, K., Sadatinejad, S. J. and Shokrian, F. (2023). Investigating Alterations in the underground water level of Ravansar- Sanjabi Plain under CIMP5 climate scenarios. Desert Ecosystem Engineering, 11(37), 71-84. doi: 10.22052/deej.2023.248647.1001
Tavakoli, M., Motlagh, Z. K., Sayadi, M. H., Ibraheem, I. M., & Youssef, Y. M. (2024). Sustainable Groundwater management using machine learning-based DRASTIC model in rurbanizing riverine region: A case study of Kerman Province, Iran.
Water, 16(19), 2748.
https://doi.org/10.3390/w16192748
Trabelsi, F., Bel Hadj Ali, S., & Lee, S. (2022). Comparison of novel hybrid and benchmark machine learning algorithms to predict groundwater potentiality: case of a drought-prone region of Medjerda Basin, northern Tunisia.
Remote Sensing, 15(1), 152.
https://doi.org/10.3390/rs15010152
Uc-Castillo, J. L., Marín-Celestino, A. E., Martínez-Cruz, D. A., Tuxpan-Vargas, J., & Ramos-Leal, J. A. (2023). A systematic review and meta-analysis of groundwater level forecasting with machine learning techniques: Current status and future directions.
Environmental Modelling & Software, 168, 105788.
https://doi.org/10.1016/j.envsoft.2023.105788
Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., & Ren, M. (2020). Re-evaluation of the power of the Mann-Kendall test for detecting monotonic trends in hydrometeorological time series. Frontiers in Earth Science, 8, 14. https://doi.org/10.3389/feart.2020.00014
Wang, P. (2024, December).
Prediction of the Groundwater Levels Based on Random Forest Regression Algorithm. In 2024 IEEE 4th International Conference on Information Technology, Big Data and Artificial Intelligence, 4, 214-217.
https://doi.org/10.1109/ICIBA62489.2024.10869277
Wu, W. Y., Lo, M. H., Wada, Y., Famiglietti, J. S., Reager, J. T., Yeh, P. J. F., Ducharne, A., & Yang, Z. L. (2020). Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers.
Nature communications, 11(1), 3710.
https://doi.org/10.1038/s41467-020-17581-y
Zeydalinejad, N., Pour-Beyranvand, A., Nassery, H. R., & Ghazi, B. (2025). Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran.
Acta Geophysica, 73(1), 831-854.
https://doi.org/10.1007/s11600-024-01400-9