ارزیابی کیفیت زهاب اراضی کشاورزی با استفاده از شاخص‌های هیدروشیمیایی جهت استفاده مجدد برای آبیاری (مطالعه موردی: شهرستان باوی- خوزستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

2 دانشیار گروه مهندسی آب-دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 گروه مهندسی طبیعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

4 مدیر مرکز پایش و نظارت بر کیفیت آب و فاضلاب- شرکت آب و فاضلاب خوزستان.

چکیده

این پژوهش با هدف ارزیابی کیفیت زهاب‌های تولیدی از اراضی تحت کشت گندم پاییزه در شهرستان باوی استان خوزستان انجام شد. نمونه‌برداری از سه جمع‌کننده زهکش در فواصل ۹۵۰ (زهکش 1)، ۱۴۱۰ (زهکش 2) و ۱۷۷۰ (زهکش 3) متری از رودخانه کارون در قالب آزمایش فاکتوریل بر پایه طرح بلوک‌های کامل تصادفی با دو فاکتور مکان (در سه سطح) و زمان (در سه سطح دی تا اسفند ۱۴۰۲) اجرا گردید. پارامترهای فیزیکوشیمیایی آب شامل مواد جامد محلول، قلیائیت، هدایت الکتریکی، کلسیم، منیزیم، سدیم، پتاسیم، کلراید، فسفات، نیترات، کربنات و بی‌کربنات اندازه‌گیری شدند. شاخص‌های هیدروشیمیایی شامل درصد سدیم (SSP)، نسبت جذب سدیم (SAR)، کربنات سدیم باقیمانده (RSC)، شاخص نفوذپذیری (PI)، نسبت کلی (KR)، نسبت جذب منیزیم (MAR) و سختی کل (TH) برای ارزیابی کیفیت آب آبیاری مورد استفاده قرار گرفت. نتایج نشان داد میانگین TDS در زهکش ۱ (۱۹۹۲ میلی‌گرم بر لیتر) به‌طور معناداری کمتر از زهکش‌های ۲ (۳۵۸۰ میلی‌گرم بر لیتر) و ۳ (۳۵۷۳ میلی‌گرم بر لیتر) بود. میانگین شاخص‌های کیفی زهکش 1 شامل SAR (59/23)، RSC (5/1)، PI (53%)، KR (97/0)، MAR (24/0) و TH (۸۰۰ میلی‌گرم بر لیتر) به‌طور معناداری کمتر از زهکش‌های دیگر ثبت شد. لذا، آب زهکش ۱ به دلیل شوری و ترکیب کاتیونی مناسب، برای آبیاری همه گیاهان (حساس، نیمه حساس و مقاوم) قابل استفاده است. آب زهکش‌های ۲ و ۳ به دلیل شوری بالا و غلبه سدیم و کلراید، تنها برای گیاهان مقاوم مناسب بوده و استفاده از آن‌ها برای گیاهان حساس و نیمه حساس نیازمند مدیریت و اصلاح است. این مطالعه اهمیت پایش کیفیت زهاب و مدیریت تلفیقی منابع آب برای استفاده پایدار را تأکید می‌کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Agricultural Drainage Water Quality for Irrigation Reuse Using Hydrochemical Indices (Case Study: Bavi County, Khuzestan)

نویسندگان [English]

  • Mohamad Dakhili 1
  • Javad Zahiri 2
  • Mitra Cheraghi 3
  • Shahram Moradi 4
1 Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Iran.
2 Associate Professor, Department of Water Engineering,, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
3 Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Iran.
4 Head of the Water and Wastewater Quality Monitoring and Supervision Center - Khuzestan Water and Sewage Company, Iran
چکیده [English]

This study evaluated the quality of drainage water from autumn wheat fields in Bavi County, Khuzestan Province. Monthly water samples were collected from the Karun River between December 2023 and February 2024. Samples were taken from three drainage collectors located at 950, 1410, and 1770 meters, following a factorial experimental design based on a randomized complete block design with two factors: location (at three levels) and time (at three levels). Key physicochemical parameters measured included total dissolved solids (TDS), alkalinity, electrical conductivity, calcium, magnesium, sodium, potassium, chloride, phosphate, nitrate, carbonate, and bicarbonate. To assess the water’s suitability for irrigation, several hydrochemical indices were calculated: soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelly’s ratio (KR), magnesium adsorption ratio (MAR), and total hardness (TH). Results showed that the average TDS in drain 1 (1992 mg/L) was significantly lower than in drain 2 (3580 mg/L) and drain 3 (3573 mg/L). Similarly, average values of irrigation quality indices for drain 1—such as SAR (23.59), RSC (1.5), PI (53%), KR (0.97), MAR (0.24), and TH (800 mg/L)—were all markedly lower compared to the other drains. These findings indicate that water from drain 1 is suitable for irrigating all plant types—sensitive, semi-sensitive, and tolerant—due to its favorable salinity levels and cation balance. Conversely, the high salinity and elevated sodium and chloride concentrations in water from drains 2 and 3 limit their use to salt-tolerant crops. Irrigation of sensitive or semi-sensitive plants with water from these drains would require careful management and remediation. This study underscores the importance of continuous monitoring of drainage water quality and the implementation of integrated water resource management to promote sustainable water use.

کلیدواژه‌ها [English]

  • Drainage Water Quality
  • Hydrochemical Indices
  • Sustainable Agriculture
  • Water Resource Management

Article type: Research Article

 

Article history:

Received: May. 9, 2025

Revised: June. 27, 2025

Accepted: July. 14, 2025

Published online: Sep. 2025

 

Keywords:

Drainage Water Quality,

Hydrochemical Indices,

Sustainable Agriculture,

Water Resource Management

This study evaluated the quality of drainage water from autumn wheat fields in Bavi County, Khuzestan Province. Monthly water samples were collected from the Karun River between December 2023 and February 2024. Samples were taken from three drainage collectors located at 950, 1410, and 1770 meters, following a factorial experimental design based on a randomized complete block design with two factors: location (at three levels) and time (at three levels). Key physicochemical parameters measured included total dissolved solids (TDS), alkalinity, electrical conductivity, calcium, magnesium, sodium, potassium, chloride, phosphate, nitrate, carbonate, and bicarbonate. To assess the water’s suitability for irrigation, several hydrochemical indices were calculated: soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelly’s ratio (KR), magnesium adsorption ratio (MAR), and total hardness (TH). Results showed that the average TDS in drain 1 (1992 mg/L) was significantly lower than in drain 2 (3580 mg/L) and drain 3 (3573 mg/L). Similarly, average values of irrigation quality indices for drain 1—such as SAR (23.59), RSC (1.5), PI (53%), KR (0.97), MAR (0.24), and TH (800 mg/L)—were all markedly lower compared to the other drains. These findings indicate that water from drain 1 is suitable for irrigating all plant types—sensitive, semi-sensitive, and tolerant—due to its favorable salinity levels and cation balance. Conversely, the high salinity and elevated sodium and chloride concentrations in water from drains 2 and 3 limit their use to salt-tolerant crops. Irrigation of sensitive or semi-sensitive plants with water from these drains would require careful management and remediation. This study underscores the importance of continuous monitoring of drainage water quality and the implementation of integrated water resource management to promote sustainable water use.

 

 

Cite this article: Dakhili, M., Zahiri, J., Cheraghi, M., Moradi, Sh. (2025) Assessment of Agricultural Drainage Water Quality for Irrigation Reuse Using Hydrochemical Indices (Case Study: Bavi County, Khuzestan), Iranian Journal of Soil and Water Research, 56 (7), 1949-1966.  https://doi.org/10.22059/ijswr.2025.394995.669936

                               © The Author(s).                                               Publisher: University of Tehran Press.

DOI: https://doi.org/10.22059/ijswr.2025.394995.669936

 

 

EXTENDED ABSTRACT

Introduction

Given the increasing need for water resources in agriculture and the limitation of freshwater resources, the reuse of agricultural drainage water is important as a sustainable solution in water resource management in arid and semi-arid regions. In Bavi County, Khuzestan Province, due to the high volume of agricultural drainage water production, it is essential to evaluate the quality of these waters and investigate their reusability for irrigating crops such as wheat, barley, corn, and legumes. This research aims to assess the quality of drainage water and examine the possibility of its reuse in the hot and dry climatic conditions of southwestern Iran. As an innovative approach towards sustainable agriculture and water resource management, it can contribute to improving management decisions at the regional and national levels.

Materials and Methods

In this study, to evaluate the water quality of agricultural drains in Bavi County. Samples were taken from three drainage collectors located at 950, 1410, and 1770 meters from Karun River, following a factorial experimental design based on a randomized complete block design with two factors: location (at three levels) and time (at three levels December 2023 to February 2024). Physicochemical parameters of the water, including Total Dissolved Solids (TDS), pH, Electrical Conductivity (EC), Calcium (Ca²⁺), Magnesium (Mg²⁺), Sodium (Na⁺), Potassium (K⁺), Chloride (Cl⁻), Phosphate (PO₄²⁻), Nitrate (NO₃⁻), Carbonate (CO₃²⁻), and Bicarbonate (HCO₃⁻), were measured. Hydrochemical indices, including Sodium Percentage (SSP), Sodium Adsorption Ratio (SAR), Residual Sodium Carbonate (RSC), Permeability Index (PI), Kelly's Ratio (KR), Magnesium Adsorption Ratio (MAR), and Total Hardness (TH), were used to evaluate irrigation water quality. Additionally, three water quality classification systems (Nejbaur, USSL, and FAO) were employed to analyze water quality and its reusability in irrigation.

Results

Results showed that the average TDS in drain 1 (1992 mg/L) was significantly lower than in drains 2 (3580 mg/L) and 3 (3573 mg/L). Similarly, average values of irrigation quality indices for drain 1—such as SAR (23.59), RSC (1.5), PI (53%), KR (0.97), MAR (0.24), and TH (800 mg/L)—were all markedly lower compared to the other drains and were closer to river water values. The results of this study indicate that Drain 1 has better hydrochemical quality compared to Drains 2 and 3. Furthermore, the ratio of calcium and magnesium ions to sodium in Drain 1 was more favorable, indicating its high potential for reuse in irrigation. In contrast, Drains 2 and 3, due to high salinity and high concentrations of sodium and chloride ions, require remediation measures such as mixing with better quality water or employing saline soil management techniques.

Conclusion

Overall, the results of this research showed that the water from Drains 2 and 3 is unsuitable for irrigating agricultural crops and requires remediation measures such as agricultural gypsum or heavy leaching for their use. In contrast, Drain 1 had better conditions and has the potential for use in irrigating semi-tolerant crops such as wheat, barley, and corn, but requires careful management to prevent salinity and sodicity problems in the soil. This study emphasizes the importance of accurate assessment of agricultural drainage water quality and the use of hydrochemical indices in water and soil resource management, and its results can serve as a basis for management decisions and policies regarding the reuse of drainage water in arid and semi-arid regions of the country.

Author Contributions

First author: Data collection, writing first draft, Second author: Conceptualization, Methodology, Formal analysis, Writing Original Draft, Third author: Conceptualization, Methodology, Writing - Review & Editing, Fourth author: Writing - Review & Editing.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the Agricultural Sciences and Natural Resources University of Khuzestan.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdeshahi, A., Mardani Najafabadi, M., & Zeinali, M. (2020). Determining the optimal cropping Pattern of agricultural crops in mollasani coumty of Iran: Application of Robust Multi-Objective Optimization Model. Agricultural Economics and Development28(3), 175-203. https://doi.org/10.30490/aead.2020.304989.1090. (In Persian).
Alharbi, S., Felemban, A., Abdelrahim, A., & Al-Dakhil, M. (2024). Agricultural and technology-based strategies to improve water-use efficiency in arid and semiarid areas. Water, 16(13), 1842. https://doi.org/10.3390/w16131842
Al-humairi, B., & Shamkhi, N. (2023). Assessing drainage water quality for irrigation using the water quality index and DataFit software. Water Supply, 23(6), 2349–2358. https://doi.org/10.2166/ws.2023.121
Ashour, E., Zeidan, B., & Elshemy, M. (2021). Assessment of agricultural drainage water reuse for irrigation in El-Behira Governorate, Egypt. Water Science, 35(1), 135-153. https://doi.org/10.1080/23570008.2021.1982336
Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Food and Agriculture Organization of the United Nations.
Bhat, M. A. (2018). An overview of the assessment of groundwater quality for irrigation. Journal of Agricultural Science and Food Research, 9(1), 1.
Doneen, L. D. (1964). Water quality for agriculture. Department of Irrigation, University of California, Davis.
Florides, F., Giannakoudi, M., Ioannou, G., Lazaridou, D., Lamprinidou, E., Loukoutos, N., Spyridou, M., Tosounidis, E., Xanthopoulou, M., & Katsoyiannis, I. A. (2024). Water reuse: A comprehensive review. Environments, 11(4), 81. https://doi.org/10.3390/environments11040081(MDPI)
Frankenberger, J. (2018, March). Managing water to increase resiliency of drained agricultural landscapes. In Sustainable Seminar Series.
Giri, A., Bharti, V. K., Kalia, S., Kumar, K., & Khansu, M. (2022). Hydrochemical and quality assessment of irrigation water at the trans-himalayan high-altitude regions of Leh, Ladakh, India. Applied Water Science12(8), 197. https://doi.org/10.1007/s13201-022-01716-1
Hasanpour Nodehi, M., Navabian, M. and Esmaeili Varaki, M. (2019). Assessment of agricultural drainage water for safe reuse in irrigation purposes and discharge to environment (Case study: unit F4 of Sefiedrod irrigation and drainage network). Iranian Journal of Irrigation & Drainage13(4), 909-918. https://dor.isc.ac/dor/20.1001.1.20087942.1398.13.4.5.7. (In Persian).
Hejase, C. A., Weitzel, K. A., Stokes, S. C., Grauberger, B. M., Young, R. B., Arias-Paic, M. S., ... & Dionysiou, D. D. (2021). Opportunities for treatment and reuse of agricultural drainage in the United States. ACS ES&T Engineering2(3), 292-305. https://doi.org/10.1021/acsestengg.1c00277
Khalid, S., Shahid, M., Natasha, Bibi, I., Sarwar, T., Shah, A. H., & Niazi, N. K. (2018). A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries. International Journal of Environmental Research and Public Health, 15(5), 895. https://doi.org/10.3390/ijerph15050895
Kijne, J. W., Barker, R., & Molden, D. J. (Eds.). (2003). Water productivity in agriculture: Limits and opportunities for improvement (Vol. 1). CABI.
Koochekzadeh, A., Hoveizeh, H., & Yazdipour, A. R. (2019). The effect of waste water of sugarcane farms during growing season on the water quality of Shadegan Lagoon. JWSS-Isfahan University of Technology22(4), 291-299. http://dx.doi.org/10.29252/jstnar.22.4.291. (In Persian).
Li, L., Li, P., He, S., Wang, D., Tian, Y., & Niu, L. (2024). Groundwater nitrate pollution source apportionment under varying land use/land cover patterns. Exposure and Health, 1-17. https://doi.org/10.1007/s12403-024-00666-0
Mateo-Sagasta, J., & Burke, J. (2011). Agriculture and water quality interactions: A global overview (SOLAW Background Thematic Report-TR08, 46). Food and Agriculture Organization of the United Nations.
Mokhtaran, A., Gilani, A., Ebadi, A. A., Shayan, M. A., & Sanei Dehkordi, K. (2020). Reuse of sugarcane drainage water for rice cultivation in south Khuzestan to improve water productivity in irrigation and drainage networks. Irrigation and Drainage Structures Engineering Research, 21(78), 139-156. (In Persian).
Mutasher, A. K. A., Al-Saadi, R. J. M., & Al-Mohammed, F. M. (2021). Assessment and management of drainage water quality for reuse in irrigation projects. Smart Science, 9(2), 80–102.
Niswonger, R. G., Morway, E. D., Triana, E., & Huntington, J. L. (2017). Managed aquifer recharge through off‐season irrigation in agricultural regions. Water Resources Research, 53(8), 6970–6992.
Qadir, M., Ghafoor, A., & Murtaza, G. (2000). Amelioration strategies for saline soils: A review. Land Degradation & Development, 11(6), 501–521.
Rajashekara, S. S., Nagaraju, D., Nagaraju, P., Nagesh, P. C., & Anjanappa, S. (2023). Hydrogeochemical and water quality index (WQI) evaluated in Beedanahalli watershed T. Narasipura Taluk, Mysore District, Karnataka, India. Journal of Geology, Geography and Geoecology, 32(3), 620–631. https://doi.org/10.15421/112355
Rawat, K. S., Singh, S. K., & Gautam, S. K. (2018). Assessment of groundwater quality for irrigation use: A peninsular case study. Applied Water Science, 8, 233. https://doi.org/10.1007/s13201-018-0866-8(SpringerLink)
Reinhart, B. D., Frankenberger, J. R., Hay, C. H., & Helmers, M. J. (2019). Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the US Midwest. Agricultural Water Management, 223, 105699. https://doi.org/10.1016/j.agwat.2019.105699
Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613–620.
Rhodes, J. D., Thain, J. F., & Wildon, D. C. (1996). The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta200(1), 50-57. https://doi.org/10.1007/BF00196648
Richards, L. A. (Ed.). (1954). Diagnosis and improvement of saline and alkali soils (No. 60). U.S. Government Printing Office.
Safiur Rahman, M., Saha, N., Islam, A. T., Shen, S., & Bodrud-Doza, M. (2017). Evaluation of water quality for sustainable agriculture in Bangladesh. Water, Air, & Soil Pollution, 228, 385. https://doi.org/10.1007/s11270-017-3543-x(SpringerLink)
Soucek, D. J., Linton, T. K., Tarr, C. D., Dickinson, A., Wickramanayake, N., Delos, C. G., & Cruz, L. A. (2011). Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environmental Toxicology and Chemistry, 30(4), 930–938. https://doi.org/10.1002/etc.454
Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a review. Journal of Environmental Quality, 22(3), 392–402.
Szabolcs, I. (1967). The influence of irrigation water of high sodium carbonate content on soils. Agrokémia és Talajtan, 16, 1–15.
Tanji, K. K., & Kielen, N. C. (2002). Agricultural drainage water management in arid and semi-arid areas (No. 61, pp. xiv–188). Food and Agriculture Organization of the United Nations.
Temesgen, E., Gulie, G., & Akili, D. (2023). Evaluation of drainage water quality for irrigation reuse in Kulfo and Hare irrigation command areas, southern Ethiopia. Water Practice & Technology, 18(10), 2329–2340.
Temesgen, E., Gulie, G., & Akili, D. (2023). Evaluation of drainage water quality for irrigation reuse in Kulfo and Hare irrigation command areas, southern Ethiopia. Water Practice & Technology18(10), 2329-2340. https://doi.org/10.2166/wpt.2023.146
Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons.
Vranešević, M., Zemunac, R., Grabić, J., & Salvai, A. (2024). Hydrochemical characteristics and suitability assessment of groundwater quality for irrigation. Applied Sciences14(2), 615. https://doi.org/10.3390/app14020615
Wang, H., Zheng, C., Ning, S., Cao, C., Li, K., Dang, H., ... & Zhang, J. (2023). Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation. Agricultural Water Management286, 108383. DOI: 10.1016/j.agwat.2023.108383
Zamani, M. G., Moridi, A., & Yazdi, J. (2022). Groundwater management in arid and semi-arid regions. Arabian Journal of Geosciences, 15(4), 362. https://doi.org/10.1007/s12517-022-09546-w(SpringerLink)