تفسیر نتایج داده‌های آزمون خاک پتاسیم در تعدادی از خاک‌های آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک. دانشکده کشاورزی. دانشگاه شهرکرد. ایران

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران.

3 گروه علوم خاک، دانشکده کشاورزی، دانشگاه شهرکرد، ایران

4 گروه علوم خاک، دانشکده کشاورزی، دانشگاه با هنر کرمان. کرمان. ایران.

چکیده

آگاهی از وضعیت پتاسیم خاک در مدیریت تغذیه گیاهان از اهمیت ویژه‌ای برخوردار است. تحقیق حاضر، به منظور بررسی وضعیت پتاسیم با عصاره‌گیرهای مختلف و گروه‌بندی مقادیر پتاسیم خاک به روش تجزیه واریانس دو گروهه و سه گروهه کیت-نلسون در گیاه ذرت در تعدادی از خاک‌های آهکی انجام شد. بدین منظور، 30 نمونه از خاک‌های کشاورزی (30-0 سانتیمتر) دشت شهرکرد جمع‌آوری شد. آزمایش گلخانه‌ای به صورت فاکتوریل و در قالب طرح کاملا تصادفی با دو فاکتور (نوع خاک و مقدار کود پتاسه) در 3 تکرار انجام شد. پس از اتمام دوره رویشی، بخش هوایی ذرت برداشت و شاخص‌های گیاهی تعیین شد. نتایج تجزیه واریانس نشان داد که اثرات خاک و کود پتاسه در سطح یک درصد اثر معنی‌داری بر وزن خشک، غلظت و جذب کل پتاسیم گیاه داشت. در بین عصاره‌گیرهای بررسی‌شده، استات آمونیوم یک نرمال، باریم کلرید 1/0 مولار و کلسیم کلرید 01/0 مولار، به‌ ترتیب به ‌عنوان مؤثرترین روش‌های برآورد پتاسیم قابل استفاده در این خاک‌ها شناسایی شدند. با استفاده از روش‌ تجزیه واریانس دو گروهه کیت-نلسون، حد بحرانی پتاسیم در عصاره‌گیرهای استات آمونیوم یک نرمال، باریم کلرید 1/0 مولار و کلسیم کلرید 01/0 مولار به‌ترتیب 0/290، 25/270 و 50/69  میلی‌گرم بر کیلوگرم خاک به دست آمد. همچنین، نتایج آزمون خاک پتاسیم به روش تجزیه واریانس سه گروهه کیت-نلسون نشان داد که مرز گروه کم و متوسط در عصاره‌گیرهای ذکر شده به‌ترتیب؛ 5/200، 5/205 و 0/33 میلی‌گرم بر کیلوگرم و مرز گروه متوسط و زیاد، به‌ترتیب؛ 5/364، 5/270 و 5/69  میلی‌گرم بر کیلوگرم بود. این نتایج می‌تواند در مدیریت بهتر تغذیه پتاسیم در خاک‌های آهکی کشور مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Calibration of Potassium Soil Test Results in Some Calcareous Soils

نویسندگان [English]

  • Marzieh Barati Zanyani 1
  • Alireza Hosseinpur 2
  • Mohammad Hasan Salehi 3
  • Azam Jafari 4
1 Department of Soil Sciences and Engineering. Faculty of Agriculture. Shahrekord University. Shahrekord., Iran.
2 Department of Soil Sciences and Engineering. Faculty of Agriculture. Shahrekord University. Shahrekord. Iran.
3 Department of Soil Sciences and Engineering. Faculty of Agriculture. Shahrekord University. Shahrekord. Iran.
4 Department of Soil Science. Faculty of Agriculture. Shahid Bahonar University of Kerman. Kerman. Iran.
چکیده [English]

The present study, aimed to investigate the potassium status using different extractants and to calibrate potassium soil test results by using the Cate-Nelson variance analysis method for maize (Zea mays L.) plant in some calcareous soils. Soil samples were collected (0-30 cm) from farmlands soils of Shahrekord plain and selected 30 soil samples for pot experiment. The greenhouse experiment was carried out as a factorial in the form of completely randomized design with two factors) types of soil and potash fertilizer (with three replications. At the end of the vegetative period, maize plants harvested and plant indices were determined. The results of the analysis of variance showed that the main effects of soil type and potassium fertilizer were significant (p<0.01) on dry matter weight, potassium concentration and uptake. Among the extractants evaluated, 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride were identified as the most effective methods for estimating available potassium in these soils, respectively. By using two-classes model of Cate- Nelson variance analysis, the potassium critical levels in the 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride extractants were 290.0, 270.25 and 69.50 mg kg-1 respectively. By using the three-class model of Cate- Nelson variance analysis showed that the low and medium class boundaries for these extractants were 200.5, 205.5 and 33.0 mg kg-1 respectively and the medium and high class boundaries were 364.5, 270.5, and 69.5 mg kg-1 respectively. These results can be utilized to improve potassium fertilization management in calcareous soils of the country.

کلیدواژه‌ها [English]

  • 'Available Potassium'
  • 'Maize Plant Response'
  • 'Different Extractants'
  • 'Cate- Nelson'

 

Introduction:

One of the macronutrient essential for plant growth is potassium and plays significant physiological and biochemical roles in plant yield. There are four forms of potassium in the soil, listed in order of their availability for plant uptake: soluble potassium, exchangeable potassium, non-exchangeable potassium, and structural potassium. Due to continuous cultivation and the lack of potash fertilizer usage, the available potassium in soils has decreased, and the status of available potassium should be assessed. Therefore, soil testing serves as an effective method for evaluating the potassium absorbed by plants during the growing season.The soil test program for each element, includes; the correct principles for preparing and collecting soil samples, extracting the desired element from the soil, correlation element extracted with plant indices, interpreting laboratory results and recommending appropriate fertilizers based on climatic, economic, and farm management factors. Soil testing enables farmers and researchers to identify the best soil management practices and make optimally use of fertilizer resources.

Objective:

The aim of this research was to investigate the potassium status using different extractants in Shahrekord plain farmlands and calibration of  potassium soil test results by using two-classes and three-classes Cate-Nelson models variance analysis for maize (Zea mays L.) plant in some calcareous soils.

Material and method:

 To implement the potassium soil test program for maize plant in the calcareous soils of the ShahreKord plain, 30 agricultural soil samples were collected from a depth of 30 cm. Five extractants including; 1N NH4OAc, AB- DTPA, 0.1M barium chloride, 0.01M calcium chloride and Mehlich 1 were evaluated for extracting available potassium.

The greenhouse experiment was carried out as a factorial in the form of completely randomized design with two factor; 30 types of soil and potash fertilizer in two levels of potassium (zero and 100 mg k kg-1) from sources of potassium sulfate with three replications. At the end of,  the vegetative period , corn plants harvested and plant indices including; dry matter weight, potassium concentration, potassium uptake, relative yield and plant response were determined. To assess the significance of treatment effects in terms of plant indicators, factorial analysis of variance was performed. Then, the soils based on potassium extracted in appropriate extractants; by using the Cate-Nelson variance analysis method grouping into two (low and high) and three groups (low, medium, and high).

Result and Discussion:

The results of the analysis of variance showed that the main effects of soil type and potassium fertilizer were significant (p<0.01) on dry matter weight, potassium concentration and uptake. However, the interaction between soil and fertilizer was not significant for dry matter weight. The results showed that different extractants, extracted varying concentrations of potassium. Based on the high correlation between potassium extracted by extractants 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride with relative yield and plant responses indices, these extractants can be considered appropriate for use these soils. By using two-classes model of Cate- Nelson variance analysis, the low and high class boundaries for the 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride extractants were 290.0, 270.25 and 69.50 mg kg-1 respectively. By using the three-class model of Cate- Nelson variance analysis showed that the low and medium class boundaries for 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride extractants were 200.5, 205.5 and 33.0 mg kg-1 respectively. The medium and high class boundaries for these extractants were 364.5, 270.5, and 69.5 mg kg-1 respectively. Based on the two-classes model of Cate- Nelson variance analysis, in the 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride extractants 47, 67 and 77, of the soils are placed into the low soil test class. Also, based on the three-class model of Cate- Nelson variance analysis, in the 1N NH4OAc, 0.1M barium chloride and 0.01M calcium chloride extractants, 13, 13 and 13 are classified in the low class and 17, 30 and 20, of the soils are placed into the high soil test class.

Author Contributions:

All authors have read and agreed to the published version of the manuscript.

Data Availability Statement:

Data is available on reasonable request from the authors.

 

Acknowledgements:

The authors would like to thank the Soil Science Department of the University of Shahrekord for providing equipment and facilities.

Ethical considerations:

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest:

The author declares no conflict of interest. 

Al-kanani, T., Mackenzie, A. F., & Ross, G. L. (1984). Potassium statusof some Quebec Soils: K release by nitric and sodium tetera-phenylboran as related to particle size and mineralogy. Canadian Journal of Soil Science. 64(1) : 99-106. https://doi.org/10.4141/cjss84-009.
Al-Mafraji, R. J., Saad Hannoon, T. M. & Al-Barakat N. K. (2022). The impact of potassium levels and its extraction methods on growth and yield of potassium (Solanum Tuberosuml.). Plant Archives. 20 (1): 416- 419.
Bray, R. H. (1958). The correlation of a phosphorus soil test with the response of wheat through a modified Mitscherlich equation. Soil Science Society of America, Proceeding. 22: 314-317. https://doi.org/10.2136/sssaj1958.03615995002200040013x.
Corey, R. B. (1987). Soil testing procedures: Correlation. In: JR Brown et. al. (Eds.), Soil testing: Sampling, Correlation, Calibration and Interpretaion. Soil Science Society of America, Madison, Wisconsin. pp. 15-22. https://doi.org/10.2136/sssaspecpub21.c2.
Cate, R. B., & Nelson, L. A. (1965). A rapid method for correlation of soil test analyses with plant response data. NC State University Agricultural Experiment Station. https://lib.ugent.be/catalog/rug01:000226900.
Cate, R. B. Jr., & Nelson. L. A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America. Proceeding. 35(4):658-660. https://doi.org/10.2136/sssaj1971.03615995003500040048x.
Dahnke, D., & Olson R. A. (1990). Soil test correlation, calibration and recommendation. In: Westerman R.L. (Ed.). Soil Testing and Plant Analysis, 3rd ed., Soil Science Society of America Book Series Number 3, Soil Science Society of America, ,Madison, Wisconsin. pp. 45-71. https://doi.org/10.2136/sssabookser3.3ed.c4.
Fathi, S., Samadi, A., Davari, M., & Asadi Kapourchal, S. (2014). Evaluating different extractants for determining corn available potassium in some calcareous soils of Kurdistan province.Cereal Research, 4 (3), 253-266. https://dor.isc.ac/dor/20.1001.1.22520163.1393.4.3.6.4 [In Persian]
Gee, G. W. & Bauder, J. W. (1986). Particle-size analysis. In: Klute A. (ed.) Methods of Soil Analysis: Part I-Physical and mineralogy methods. Agron. Monogr. 9. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. pp. 383-412.
Havlin, J. L., & Soltanpour, P. N. (1982). Greenhouse and field evaluation of the NH4HCO3-DTPA soil test for Fe.  Journal of Plant Nutrition. 5(4-7): 769-783. https://doi.org/10.1080/01904168209363007.
Hoseinpur, A. R., & Kolbasi, M. (2001). Kinetics of non-exchangeable potassium release from soil and its components in some soils of central Iran. 7th Iranian Soil Science Congress, Shahrekord University. [In Persian]
Hoseinpur, A. R. (2004). Evaluation of the Capability of Extractants in Determining Garlic Available K for Certain Soils in Hamadan. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science 8(2): 45-56. http://dorl.net/dor/20.1001.1.24763594.1383.8.2.5.8 [In Persian]
Khodshenas, M. A., Ghadbeiklou, J., & Dadivar, M. (2021). Evaluation of chemical extractants and determination of the potassium critical level in soils under the bean cultivation. Journal of Soil Research. 34 (4), 451-463.  https://dor.isc.ac/dor/20.1001.1.22287124.1399.34.4.3.2 [In Persian]
Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, Sodium and Potassium. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties. (2nd ed.). American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. pp. 225-246.
Kumar Meena, R., Amrutsagar, V. M., Verma, M. K., Seth, V., Meena, R., & Kumar, M. (2015). Critical limits of potassium in soil and plant for increased productivity of Sorghum (Sorghum bicolor L.). Ecology, Environment and Conservation. Pap, 21, 345-351.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum In: Sparks D.L. (ed.) Chemocal Methods of Soil Analysis. Soil Science Society of America, Madison pp. 437-447. https://doi.org/10.2136/sssabookser5.3.c15.
McLean, E. O., &  Watson, M. E. (1985). Soil measurements of plant available potassium. In: Munson, R.D.  (ed.), Potassium in agriculture. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, Wisconsin. pp. 277–308.
Mustscher, H. (1995).” Measurement and assessment of soil potassium.” International potash institute Research Topics Number 4”.
Mulugeta, D., Tekalign, M., Sheleme, B.,  & Selamyihun. K. (2019). Potassium critical level in soil for Teff (Eragrostis tef (Zucc.) Trotter) grown in the central highland soils of Ethiopia. SN Applied Sciences. 1(9),958. https://link.springer.com/article/10.1007/s42452-019-0873-x.
Muneshwar Singh, R. H., Wanjari, B. L., Abhay Shirale, L., Kumar, U., & Jamra, SH. (2019). Response of Crops to Applied Potassium and Estimation of Critical Limits in Vertisols. Indian Journal of Fertilisers. 15(7): 748-753.
Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4, North Carolina Soil Test Divition, Department of Agriculture, Raleigh, North Carolina.
Nelson, D. W. & Sommers, L. E. (1996). Carbon, organic carbon, and organic matter. In: Sparks D.L. (ed) Methods of Soil Analysis. Soil Science Society of America, Madison. pp. 961-1010.
Rhoades, J. D. (1996). Salinity: electrical conductivity and total dissolved solids. In: Sparks D.L. (ed) Methods of Soil Analysis. Soil Science Society of America, Madison. pp. 417-435.
Shahbazi, K., Cheraghi, M., Marzi, M., & Hasheminasab Zavareh, K. S. (2022). The effect of extractant type and soil/extractant ratio on the extraction of soil available potassium. Iranian Journal of Soil and Water Research. https://dor.isc.ac/dor/20.1001.1.2008479.1401.53.7.2.7 [In Persian]
Sharifi, M., & Kolbasi, M. (2001). Selection of suitable extractant to extract available potassium for Corn in soils of central region of Isfahan province. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 5(1), 77–91. http://dorl.net/dor/20.1001.1.22518517.1380.5.1.7.2 [In Persian]
Sheldrick, W. F. (1985). World potassium reserves. In: Muuson R.D. (ed.), Potassium in Agriculture. Soil Science Society of America Journal. Madison, Wisconsin. pp.3-29. https:// doi/abs/10.2134/1985.potassium.c1
Sparks, D. L. (2000b). Bioavailability of soil potassium. Handbook of soil science. CRC Press, New York.
Sparks, D. L., & Huang, M. (1985). Physical chemistry of soil potassium. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin pp. 201-276. https://doi.org/10.2134/1985.potassium.c9
Sumner, M. E. & Miller W. P. (1996). Cation exchange capacity and exchange coefficients. In: Sparks D.I.(ed.), Methods of Soil Analysis Part3, Chemical Methods. Soil Science Society of America Book Series 5, Soil Science Society of America, Madison, WI. 1201-1231.
Simard, R. R., & Zizka, J. (1994). Evaluation plant available potassium with strontium chlorid. Communications in Soil Science and Plant Analysis. 25(9-10), 1779-1789. https://doi.org/10.1080/00103629409369152.
Salomon, E. (1998). Extraction of soil potassium with 0.01 M calcium chloride compared to official Swedish methods. Communications in Soil Science and Plant Analysis, 29(19-20), 2841-2854. https://doi.org/10.1080/00103629809370159.
Soltanpour, P. N., & Schwab, A. P. (1977). A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils. Communications in soil science and plant analysis, 8(3), 195-207. https://doi.org/10.1080/00103627709366714.
Tisdal, S. L., Nelson, W. L. & Beaton. J. D. (1985). Soil fertility and fertilizers. 4 th.ed., McMillan Publishing co., New York, NY.
Thomas, G. W. (1982). Exchangeable cations. In: A.L. Page et al. (eds.)  Methods of Soil Analysis: chemical and microbiological properties. Agron. Monogr. 9. Part 2. 2nd ed. American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin. pp.159-166.
Tafaroji, S. H., & Haghparest Tanha, M. R. (2005). Study of potassium status in soils of Gilan province and the effect of physico-chemical properties of soil on it. 9th Iranian Soil Science Congress, Soil and Water Conservation Research Center of Iran. [In Persian]
Waling, I., Van Vark, W., Houba, V. J. G., & Van der Lee, J. J. (1989). Soil and plant analysis, a series of syllabi: Part 7. Plant Analysis ProceduresWageningen Agriculture University.
Zadehparizi, S., Tajabadi Pour, A., & Esfandiarpour Boroujeni, E. (2015). Evaluation chemical extractants in determination of available potassium for pistachio in calcareous soils of Rafsanjan. Journal of Crops Improvement , 18(4), 935–947. https://dor.isc.ac/dor/20.1001.1.83372008.1395.18.4.15.0 [In Persian]