معرفی شاخص جامع سودآوری به‌منظور ارزیابی ارزش سیستم بازچرخانی زهاب در استان خوزستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آبیاری و آبادانی، دانشگاه تهران، کرج، تهران

2 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 گروه پژوهش مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران.

چکیده

با افزایش فشار بر منابع آب شیرین در سراسر جهان، اهمیت استفاده از زهاب کشاورزی به‌ویژه در مناطق خشک مانند استان خوزستان که با کمبود آب شیرین و دفع بیش از حد زهاب مواجه‌اند، افزایش ‌یافته است. سیستم بازچرخانی زهاب DWR)) شامل جمع‌آوری و ذخیره‌سازی زهاب برای آبیاری تکمیلی، به‌عنوان راهکاری نویدبخش برای افزایش بهره‌وری آب کشاورزی و کاهش اثرات زیست‌محیطی مطرح شده است. در این مطالعه، اثرات بالقوه DWR بر عملکرد نیشکر در کشت و صنعت امیرکبیر ارزیابی شده و هدف تعیین نسبت معقول بازچرخانی زهاب کشاورزی برای حداکثرسازی منافع اقتصادی و زیست‌محیطی می‌باشد. به‌منظور دستیابی به این هدف، شاخص نوآورانه‌ای به نام شاخص جامع سودآوری آب مصرفی CPCW)) معرفی گردید که عواملی نظیر عملکرد محصول، هزینه فرصت، هزینه‌های دفع و پیامدهای زیست‌محیطی را مد نظر قرار می‌دهد. نتایج پژوهش نشان داد که بازچرخانی ۲۳% زهاب منجر به کاهش ۱۹% عملکرد نیشکر به علت افزایش ۴۵% شوری آب آبیاری شده و بالاترین مقدار شاخص حاصل گردید. صرفه‌جویی در منابع آبی، هزینه‌های فرصت را افزایش داده و امکان آبیاری تکمیلی 25917 هکتار نخلستان خرما یا 77840 هکتار مزارع گندم را فراهم ساخت. برای تطبیق با اولویت‌های کشاورزان، سناریویی با کاهش ۱۵% عملکرد محصول و بازچرخانی ۲۰% زهاب مورد بررسی قرار گرفت که امکان بازچرخانی 323 میلیون مترمکعب زهاب و حفظ 666 میلیون مترمکعب آب از رودخانه کارون را به همراه داشت. به‌طورکلی، راهبرد پیشنهادی DWR در کاهش اثرات زیست‌محیطی دفع زهاب و بهینه‌سازی منابع در مناطق کم‌آب بسیار مؤثر ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Introducing a Comprehensive Profitability Index to Unlock the Value of Drainage Water Recycling system in Khuzestan Province

نویسندگان [English]

  • SeyedSina KoochakKosari 1
  • Masoud Parsinejad 2
  • Ali Mokhtaran 3
  • Arezo N. Ghameshlou 2
  • AmirAbbas Golabchi 2
1 Department of irrigation and reclamation, university of Tehran, Karaj, Iran
2 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Agricultural Engineering Research Department, Agricultural Research Education and Extension Organization (AREEO), Ahvaz , Iran.
چکیده [English]

As freshwater resources face increasing pressure worldwide, the significance of utilizing drainage water (DW) has gained prominence, particularly in arid regions such as Khuzestan province, Iran, where water scarcity and excessive agricultural DW disposal present critical challenges. Drainage water recycling (DWR), involving the capture and storage of DW for supplemental irrigation, has emerged as a promising strategy to simultaneously enhance agricultural productivity and mitigate environmental impacts. This theoretical study assessed the potential effects of DWR on sugarcane yield in Amirkabir Agro-industry and aimed to determine the desire proportion of reusable DW that maximizes both economic and environmental benefits. To achieve this, a novel index, the Comprehensive Profitability of Consumed Water (CPCW), was introduced to integrate key factors such as crop yield, opportunity costs, disposal expenses, and environmental implications. Results indicated that recycling 23% of DW led to a 19% reduction in sugarcane yield due to a 45% increase in irrigation water salinity, yielding the highest CPCW index. The associated water savings contributed to increased opportunity costs, enabling supplemental irrigation for 25917 hectares of date orchards or 77840 hectares of wheat fields. To better align with farmers' priorities, an alternative scenario with a 15% yield reduction was examined, corresponding to a 20% DW recycling rate. This approach facilitated the reuse of 323 Mm³ of DW while conserving 666 Mm³ of water from the Karun River. Overall, the proposed DWR strategy demonstrated substantial effectiveness in alleviating the environmental burden of DW disposal while optimizing resource use in water-scarce regions.

کلیدواژه‌ها [English]

  • Drainage water reuse
  • Agricultural water saving
  • Cost opportunity
  • Environment
  • Khuzestan

 

Introduction

Water scarcity is a major challenge in arid and semi-arid regions, exacerbated by population growth, climate change, and heavy reliance on freshwater for agriculture. In Iran, this crisis has led to a reduction in renewable water resources, over-extraction of groundwater, and environmental impacts. Drainage is a common agricultural practice that improves root ventilation and crop productivity but can also lead to water quality degradation through nutrient and chemical runoff. To mitigate these effects, protective practices such as Drainage Water Recycling (DWR) systems are recommended. Khuzestan, a key agricultural region in Iran, faces severe challenges in drainage and water scarcity. The discharge of drainage water from sugarcane fields has caused environmental and political issues. DWR systems can help by collecting and reusing drainage water for supplemental irrigation. These technologies not only preserve water resources but also enhance drainage infrastructure performance and agricultural resilience.Top of Form

Objective:

This study pursues three main objectives: (1) to predict the impact of using stored drainage water in DWR ponds on sugarcane performance through empirical equations, and to determine an optimal ratio of recycled drainage water to meet the crop's water requirements, (2) to propose a comprehensive index that considers all aspects of the DWR system's effects, including economic and environmental factors, in the decision-making process. This study can serve as a foundation for future research on sustainable agriculture and the use of drainage water in arid and semi-arid regions.

 Materials and method:

       The theoretical study was conducted to investigating the implications of the DWR system at privately Amirkabir agro-industry farm. This agro-industry spans 12000 ha, comprising 480 plots. It is situated approximately 45 km south of Ahvaz City and west of the Karun River. The salinity levels considered for irrigation and drainage water in this study were 2.5 and 6 ds m-1, respectively. The blending scheme was employed for the reuse of drainage water due to its higher salinity level of 6 ds m-1 compared to the sugarcane salinity threshold of 1.7 ds m-1. The salinity of the irrigation water after blending with different recycled scenarios, namely I1(10%), I2 (20%), I3 (30%), I4 (40%), I5 (50%), and I6 (60%), was computed. The comprehensive profitability of consumed water was developed using the benefit-cost ratio, offering an in-depth assessment that takes into account all aspects of the drainage water recycling system. This all-inclusive index was employed to incorporate various critical attributes of DWR system, in terms of crop yield, cost opportunity, disposal cost, and environmental impacts. This index, along with the yield of the studied crops under different scenarios, was calculated to identify the desire scenario.

Results and discussion:

       The study revealed that an optimal ratio of 23% for recycled drainage water resulted in a 19% decrease in sugarcane yield, which was associated with a 45% increase in irrigation water salinity, leading to the highest CPCW index. The calculated water savings could be used to supplement irrigation for downstream date orchards (25917 ha) or wheat fields (77840 ha), thus increasing alternate opportunity costs. Additionally, the reduction in drainage disposal costs played a key role in improving the CPCW index. To better align with farmers' priorities, a more moderate 15% decrease in crop yield was considered, leading to a 20% proportion of recycled DW. This approach recycled 323 Mm³ of drainage water and conserved a total of 666 Mm³ of water from the Karun River. In conclusion, the proposed DWR practice was highly effective in significantly mitigating the environmental impacts of DW disposal to downstream water bodies.

Conclusion:

     This study evaluates the potential benefits of a drainage water recycling system in arid regions, focusing on water conservation, water quality improvement, and economic advantages. A new index, the Comprehensive Profitability of Consumed Water (CPCW), was used to determine optimal recycling and blending percentages for irrigation. A 20% blending scenario resulted in a water saving of 67 Mm³ and recycling of 32 Mm³ in the Amirkabir agro-industry. The practice helps mitigate water-related risks and reduces water quality deterioration in receiving bodies. Results indicate that drainage water recycling can be economically beneficial, with predictions based on specific regional conditions. The study highlights the need for regional-scale evaluations and further research to optimize recycling systems and assess long-term economic impacts under future climate scenarios.     

Author Contributions

S.K: Data preparation, Software, Methodology, Formal Analysis, Validation, Results Interpretation, Investigation. Writing-original draft preparation, Writing-review and editing, Final report review. M.P: Formal Analysis, Validation, Results Interpretation, Writing-review and editing, Supervision. A.M: Conceptualization, Methodology, Data Curation, Writing-review, Supervision, Project Administration, Formal Analysis. A.N.G: Investigation, Writing-review, Final report review, Writing-original draft preparation. A.G: Writing-original draft preparation, Writing-review and editing.

Data Availability Statement

      Not applicable.

Acknowledgements

      The authors would like to thank all participants of the present study.

Ethical considerations

       The author declares that there is no conflict of interest regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancies have been completely observed by the author.

Conflict of interest

The author declares no conflict of interest.

  1. AB Khak Tehran Consulting Engineers, 2019. Revising the studies of the pumping station and the main channel of Kausar.

    AfradIrani, P., Kosari, S., Parsinejad, M., Noory, H., 2025. Predicted feasibility of sustainable irrigation best management practices for reducing water consumption and enhancing water productivity. Sustain. Water Resour. Manag. 11, 83. https://doi.org/10.1007/s40899-025-01255-y

    Akram, M., Azari, A., Nahvi, A., Bakhtiari, Z., Safaee, H., 2013. Subsurface drainage in khuzestan, iran: Environmentally revisited criteria. Irrig. Drain. 62. https://doi.org/10.1002/ird.1774

    Allen, R., Pereira, L., Raes, D., Smith, M., 1998. FAO Irrigation and drainage paper No. 56. Rome Food Agric. Organ. United Nations 56, 26–40.

    Almasi, H., Takdastan, A., Jaafarzadeh, N., Babaei, A.A., Tahmasebi Birgani, Y., Cheraghian, B., Saki, A., Jorfi, S., 2020. Spatial distribution, ecological and health risk assessment and source identification of atrazine in Shadegan international wetland, Iran. Mar. Pollut. Bull. 160, 111569. https://doi.org/10.1016/j.marpolbul.2020.111569

    ALNabhani, K., Khan, F., Yang, M., 2016. Scenario-based risk assessment of TENORM waste disposal options in oil and gas industry. J. Loss Prev. Process Ind. 40, 55–66. https://doi.org/10.1016/j.jlp.2015.12.003

    Amoatey, P., Izady, A., Al-Maktoumi, A., Chen, M., Al-Harthy, I., Al-Jabri, K., Msagati, T.A.M., Nkambule, T.T.I., Baawain, M.S., 2021. A critical review of environmental and public health impacts from the activities of evaporation ponds. Sci. Total Environ. 796, 149065. https://doi.org/10.1016/j.scitotenv.2021.149065

    Badrzadeh, N., Samani, J.M.V., Mazaheri, M., Kuriqi, A., 2022. Evaluation of management practices on agricultural nonpoint source pollution discharges into the rivers under climate change effects. Sci. Total Environ. 838, 156643. https://doi.org/10.1016/j.scitotenv.2022.156643

    Boardman, A.E., Greenberg, D.H., Vining, A.R., Weimer, D.L., 2018. Cost-Benefit Analysis: Concepts and Practice, 5th ed. Cambridge University Press, Cambridge. https://doi.org/DOI: 10.1017/9781108235594

    Chambari, S., Bagher, S.M., Jafarzadeh Haghghi, N., Khoshnod, R., 2008. Determination of Water Quality Pollution of Hoor al-Azim Wetland Based on Water Quality Parameters. Determ. Water Qual. Pollut. Hoor al-Azim Wetl. Based Water Qual. Parameters 1–9.

    Chapra, S.C., 2008. Surface water-quality modeling. Waveland press.

    Doro, L., Wang, X., Jeong, J., 2024. Simulating Agricultural Water Recycling Using the APEX Model. Environments 11, 244.

    E, D.E.M., 1926. Une nouvelle function climatologique : L’indice d’aridite. Meteorologie 2, 449–459.

    Frankenberger, J., Reinhart, B., Nelson, K., Bowling, L., Hay, C., Youssef, M., Strock, J., Jia, X., Helmers, M., Allred, B., 2017. Questions and Answers about Drainage Water Recycling for the Midwest. https://doi.org/10.13140/RG.2.2.33619.78883

    Hanley, N., Spash, C., 1996. Cost benefit analysis and the environment.

    Hoekstra, A., Chapagain, A., Aldaya, M., Mekonnen, M., 2011. The Water Footprint Assessment Manual: Setting the Global Standard. Daugherty Water Food Glob. Inst. Fac. Publ.

    Izady, A., Nikoo, M.R., Bakhtiari, P.H., Baawain, M.S., Al-Mamari, H., Msagati, T.A.M., Nkambule, T.T.I., Al-Maktoumi, A., Chen, M., Prigent, S., 2020. Risk-based Stochastic Optimization of Evaporation Ponds as a Cost-Effective and Environmentally-Friendly Solution for the Disposal of Oil-Produced Water. J. Water Process Eng. 38, 101607. https://doi.org/10.1016/j.jwpe.2020.101607

    Izady, A., Sanikhani, H., Abdalla, O., Chen, M., Kisi, O., 2017. Impurity effect on clear water evaporation: toward modelling wastewater evaporation using ANN, ANFIS-SC and GEP techniques. Hydrol. Sci. J. 62, 1856–1866. https://doi.org/10.1080/02626667.2017.1356023

    1. Allred, B., L. Gamble, D., B. Clevenger, W., A. LaBarge, G., L. Prill, G., J. Czartoski, B., R. Fausey, N., C. Brown, L., 2014. Crop Yield Summary for Three Wetland Reservoir Subirrigation Systems in Northwest Ohio. Appl. Eng. Agric. 30, 889–903. https://doi.org/10.13031/aea.30.10501

    Kaur, H., Nelson, K.A., Singh, G., Veum, K.S., Davis, M.P., Udawatta, R.P., Kaur, G., 2023. Drainage water management impacts soil properties in floodplain soils in the midwestern, USA. Agric. Water Manag. 279, 108193. https://doi.org/10.1016/J.AGWAT.2023.108193

    Kavvadias, V., Elaiopoulos, K., Theocharopoulos, S., Soupios, P., 2017. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds. Bull. Environ. Contam. Toxicol. 98, 323–330. https://doi.org/10.1007/s00128-016-1922-4

    Khairy, S., Shaban, M., Negm, A.M., Eldeen, O.W., Ramadan, E.M., 2022. Drainage water reuse strategies: Case of El-Bats drain, Fayoum Governorate, Egypt. Ain Shams Eng. J. 13, 101681. https://doi.org/10.1016/j.asej.2021.101681

    Koochekzadeh, A., Hoveizeh, H., Yazdipour, A., 2019. The Effect of Waste Water of Sugarcane Farms during Growing Season on the Water Quality of Shadegan Lagoon. J. Water Soil Sci. 22, 291–299. https://doi.org/10.29252/jstnar.22.4.291

    Kosari, S., Parsinejad, M., Mokhtaran, A., Zebardast, S., 2024. Predicted feasibility and economic return of drainage water recycling in an arid region. Agric. Water Manag. 302, 108983. https://doi.org/10.1016/j.agwat.2024.108983

    Lyman, S.N., Mansfield, M.L., Tran, H.N.Q., Evans, J.D., Jones, C., O’Neil, T., Bowers, R., Smith, A., Keslar, C., 2018. Emissions of organic compounds from produced water ponds I: Characteristics and speciation. Sci. Total Environ. 619–620, 896–905. https://doi.org/10.1016/j.scitotenv.2017.11.161

    MasoomiBalsi, M., Kosari, S., Parsinejad, M., Yazdani, M., Navabian, M., 2024. Removal or reduction of nitrogen and phosphorous pollutants from paddy fields drainage water in vegetated drainage ditches. Iran. J. Soil Water Res. https://doi.org/10.22059/ijswr.2024.375972.669702

    Mehri, A., Mohammadi, A.S., Ebrahimian, H., Boroomandnasab, S., 2023. Evaluation and optimization of surge and alternate furrow irrigation performance in maize fields using the WinSRFR software. Agric. Water Manag. 276, 108052. https://doi.org/10.1016/J.AGWAT.2022.108052

    Mitchell, M.E., Newcomer-Johnson, T., Christensen, J., Crumpton, W., Dyson, B., Canfield, T.J., Helmers, M., Forshay, K.J., 2023. A review of ecosystem services from edge-of-field practices in tile-drained agricultural systems in the United States Corn Belt Region. J. Environ. Manage. 348, 119220. https://doi.org/10.1016/j.jenvman.2023.119220

    Mohamadi, M., choobkar,  nasrin, Rezaie manesh, M., Kakoolki, S., 2019. Rehabilitation of Shadegan Lagoon, Aquaculture Opportunity and Dust Inhibiting with Khuzestan Sugarcan Industry Drainage. J. Util. Cultiv. Aquat. 7, 29–40. https://doi.org/10.22069/japu.2019.15109.1442

    Mokhtaran, A., Sepehri, S., Gilani, A.A., Ebadi, A.A., Jalali, S., 2023. Improving Rice Production Sustainability by Planting Salinity-Tolerant Rice Cultivars and Reusing Agricultural Drainage Water. J. Irrig. Drain. Eng. 149, 04023002. https://doi.org/10.1061/JIDEDH.IRENG-9898

    Mokhtaran, A., Tavoosi, M., Varjavand, P., Sepehri Sadeghian, S., 2020. Investigation of the Eeffects of Sugarcane Drainage Water for Quinoa Cultivation in Southern Khuzestanon on Crop Yield and Soil Salinity and Sodictiy Changes. J. Water Res. Agric. 34, 337–354.

    Moursi, H., Youssef, M.A., Chescheir, G.M., 2022. Development and application of DRAINMOD model for simulating crop yield and water conservation benefits of drainage water recycling. Agric. Water Manag. 266, 107592. https://doi.org/10.1016/j.agwat.2022.107592

    Moursi, H., Youssef, M.A., Poole, C., 2024. The Effect of Drainage and Subirrigation From a Small Drainage Water Recycling Reservoir on Corn and Soybean Yields in Eastern North Carolina. J. ASABE 67, 13–25. https://doi.org/10.13031/ja.15536

    Moursi, H., Youssef, M.A., Poole, C.A., Castro-Bolinaga, C.F., Chescheir, G.M., Richardson, R.J., 2023. Drainage water recycling reduced nitrogen, phosphorus, and sediment losses from a drained agricultural field in eastern North Carolina, U.S.A. Agric. Water Manag. 279, 108179. https://doi.org/10.1016/j.agwat.2023.108179

    Nelson, K., Kjaersgaard, J., Reinhart, B., Frankenberger, J., Willison, R., Gunn, K., Lee, C., Abendroth, L., Bowling, L., Niaghi, A.R., 2021. Corn Yield Response to Drainage Water Recycling using Subirrigation.

    Nelson, K.A., Smoot, R.L., 2012. Corn Hybrid Response to Water Management Practices on Claypan Soil. Int. J. Agron. 2012, 925408. https://doi.org/10.1155/2012/925408

    Rasouli, M.M., Valipour, E., Ketabchi, H., 2023. Groundwater Resources Withdrawal and Depletion Estimation Methods (Part 2: An Overview of the World and Iran Condition). Water Irrig. Manag. 13, 407–427.

    Reinhart, B., Frankenberger, J., Abendroth, L., Ahiablame, L., Bowling, L., Brown, L., Helmers, M., Jaynes, D.B., Jia, X., Kladivko, E., Nelson, K., Strock, J., Youssef, M., Mn, 2016. Drainage Water Storage for Improved Resiliency and Environmental Performance of Agricultural Landscapes.

    Reinhart, B., Frankenberger, J., Hay, C., Helmers, M., 2019. Simulated water quality and irrigation benefits from drainage water recycling at two tile-drained sites in the U.S. Midwest. Agric. Water Manag. 223, 105699. https://doi.org/10.1016/j.agwat.2019.105699

    Sadeghi, R., Ahmadaali, K., Kosari, S., Zare, S., Khalighi Sigaroodi, S., 2025. Evaluation of the Efficiency of Pyramid solar stills under Different Salinity and Water Depth Levels in a Semi-Arid Region. Irrig. Drain. Struct. Eng. Res. 25, 118–195.

    Sheini Dashtgol, 2020. Principles of Applied Water Management in Sugarcane. Sugarcane Development and By-Products Industries Research and Training Institute of Khuzestan.

    Skaggs, R.W., Brevé, M.A., Gilliam, J.W., 1994. Hydrologic and water quality impacts of agricultural drainage∗. Crit. Rev. Environ. Sci. Technol. 24, 1–32. https://doi.org/10.1080/10643389409388459

    Smith, R.J., Hancock, N.H., 1986. Leaching requirement of irrigated soils. Agric. Water Manag. 11, 13–22. https://doi.org/10.1016/0378-3774(86)90032-6

    Tan, C.S., Zhang, T.Q., 2011. Surface runoff and sub-surface drainage phosphorus losses under regular free drainage and controlled drainage with sub-irrigation systems in southern Ontario. Can. J. Soil Sci. 91, 349–359. https://doi.org/10.4141/cjss09086

    Tanji, K.K., Kielen, N.C., 2002. Agricultural Drainage Water Management in Arid and Semi-Arid Areas, in: FAO IRRIGATION AND DRAINAGE PAPER.

    Turk, A., 2001. Driving Force by Kpile Method and Pile Loading Test, Concrete Piles.

    Yang, C.-C., Prasher, S.O., Wang, S., Kim, S.H., Tan, C.S., Drury, C., Patel, R.M., 2007. Simulation of nitrate-N movement in southern Ontario, Canada with DRAINMOD-N. Agric. Water Manag. 87, 299–306. https://doi.org/10.1016/j.agwat.2006.07.009