بررسی تأثیر فرسایش آبی بر تغییرات ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در حوضه آبخیز منزلاب، شهرستان زاهدان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل

2 گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران.

3 گروه مرتع و آبخیزداری، دانشکده آب و خاک، دانشگاه زابل. زابل، ایران.

4 گروه مهندسی طبیعت، دانشکده منابع طبیعی، دانشگاه یاسوج. یاسوج، ایران.

چکیده

در این پژوهش، تأثیر فرسایش آبی بر تغییرات ویژگی‌های فیزیکی، شیمیایی و زیستی خاک در حوضه آبخیز منزلاب، به‌عنوان واحد مطالعاتی مورد بررسی قرار گرفت. نمونه‌برداری خاک (عمق ۳۰-۰ سانتی‌متر) در چهار وضعیت شامل بدون فرسایش، فرسایش کم، فرسایش متوسط و شدید در پلات‌های با ابعاد مشخص انجام شد. پارامترهای فیزیکی و شیمیایی خاک شامل بافت خاک، وزن مخصوص ظاهری، تخلخل، محتوی رطوبت خاک، اسیدیته، هدایت الکتریکی، آهک، کربن آلی، نیتروژن  کل، فسفر و پتاسیم قابل دسترس  برای ارزیابی عملکرد کلی خاک اندازه‌گیری شد.  شاخص‌های زیستی خاک شامل فعالیت آنزیمی خاک، کربن و نیتروژن زیتوده میکروبی، جمعیت میکروارگانیسم‌ها، سهم میکروبی خاک و تنفس میکروبی پایه اندازه‌گیری گردید. آنالیز داده‌ها تحت تجزیه واریانس یکطرفه با سه تکرار با نرم‌افزار SPSS انجام گرفت. یافته‌های حاصل از تجزیه واریانس نشان داد که شدت فرسایش تأثیر معنی‌داری بر تمامی ویژگی‌های فیزیکیو شیمیایی و زیستی خاک دارد. با افزایش شدت فرسایش کربن آلی،  نیتروژن کل، مقدار پتاسیم، فسفر و تخلخل خاک کاهش یافت. برخلاف عناصر غذایی، اسیدیته، هدایت الکتریکی و آهک و وزن مخصوص ظاهری خاک با افزایش شدت فرسایش به‌طور معنی‌داری افزایش یافت. نتایج نشان داد که شدت فرسایش تأثیر قابل‌توجهی بر کلیه شاخص‌های زیستی دارد. شدت فرسایش، روند کاهشی معنی‌داری بر تمامی پارامترهای زیستی داشت که نشان‌دهنده افت کیفیت زیستی و اختلال در فعالیت میکروبی خاک است. به طور کلی تغییرات در ویژگی های میکروبیوتای خاک به شدت با تغییرات ناشی از فرسایش در خصوصیات فیزیکیوشیمیایی خاک مرتبط است. بنابراین، انجام اقدامات حفاظتی و مدیریتی مؤثر قبل از تخریب بیشتر در مناطق فرسایشی توصیه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of the Effects of Water Erosion on Changes in Soil Physical, Chemical, and Biological Properties in the Monzelab Watershed, Zahedan County

نویسندگان [English]

  • Morteza Saberi 1
  • Mohammad Reza Dahmardeh Ghaleno 2
  • Rasool Khatibi 3
  • Vahid Karimian 4
1 Rangeland and Watershed Management Department, Faculty of Water and Soil, University of Zabol
2 Rangeland and Watershed Management Department, Faculty of Water and Soil, University of Zabol, Zabol, Iran
3 Rangeland and Watershed Management Department, Faculty of Water and Soil, University of Zabol. Zabol, Iran
4 Nature Engineering of Department, Faculty of Natural Resources, Yasouj University, Yasouj, Iran.
چکیده [English]

The present study investigated the effect of water erosion on changes in the soil's physical, chemical, and biological properties in the Manzlab watershed as a study unit. We conducted soil sampling (0-30 cm depth)  in four conditions: no erosion, low erosion, moderate erosion, and severe erosion in plots with specific dimensions. The physical and chemical characteristics of the soil were measured, including soil texture, bulk density, porosity, soil moisture content, acidity, electrical conductivity, lime, organic carbon, total nitrogen, available phosphorus, and potassium to evaluate the overall soil performance. Soil biological indicators were measured, including soil enzymatic activity, microbial biomass carbon and nitrogen, microorganism population, soil microbial contribution, and basal microbial respiration. Data analysis was done using a one-way analysis of variance with three replications using SPSS software. The findings from the variance analysis showed that erosion intensity affects all physical, chemical, and biological properties of the soil significantly. With increasing erosion intensity, total carbon, nitrogen, potassium, phosphorus, and soil porosity decreased. Unlike nutrients, acidity, electrical conductivity, and lime and soil bulk density increased significantly with increasing erosion intensity. The results showed that erosion intensity affects all biological indicators significantly. Erosion intensity had a significant decreasing trend on all biological parameters, which indicates a decrease in biological quality and disruption in soil microbial activity. Generally, changes in soil microbiota characteristics are strongly related to erosion-induced changes in soil physicochemical properties. Therefore, the utility of effective conservation and management measures is advocated to prevent further degradation in erosion-affected areas.

کلیدواژه‌ها [English]

  • Soil microbial diversity
  • Soil fertility
  • Erosion intensity
  • Biological quality

EXTENDED ABSTRACT

Introduction

Despite the known effects of water erosion, integrated assessments of its impact on multiple soil properties are limited, particularly in vulnerable regions like the Manzlab watershed. The present study investigated the effect of water erosion on changes in the soil's physical, chemical, and biological properties in the Manzlab watershed as a study unit.

Method

To assess the impact of water erosion on various soil properties, a systematic sampling and analysis procedure was conducted across different erosion intensities in the study area

Study Design and Sampling Procedures

We conducted soil sampling (0-30 cm depth)  in four conditions: no erosion, low erosion, moderate erosion, and severe erosion in plots with specific dimensions.

Physical and Chemical Soil Analyses

The physical and chemical characteristics of the soil were measured, including:

  • Soil texture
  • Bulk density
  • Porosity
  • Soil moisture content
  • pH (acidity)
  • Electrical conductivity (EC)
  • Lime content
  • Organic carbon
  • Total nitrogen
  • Available phosphorus
  • Available potassium

These parameters were analyzed to evaluate overall soil quality and performance under different erosion levels.

Biological Indicators Assessment

  • Soil biological indicators were also measured, including:
  • Soil enzymatic activity
  • Microbial biomass carbon (MBC) and nitrogen (MBN)
  • Microorganism population
  • Soil microbial contribution
  • Basal microbial respiration

These indicators provided insight into the biological health and microbial functionality of the soil.

Data Analysis

Data were statistically analyzed using one-way analysis of variance (ANOVA) with three replications. All analyses were performed using SPSS software.

Results

The findings from the variance analysis showed that erosion intensity affects all physical, chemical, and biological properties of the soil significantly. With increasing erosion intensity, total carbon, nitrogen, potassium, phosphorus, and soil porosity decreased. Unlike nutrients, acidity, electrical conductivity, and lime and soil bulk density increased significantly with increasing erosion intensity. The results showed that erosion intensity affects all biological indicators significantly. Erosion intensity had a significant decreasing trend on all biological parameters, which indicates a decrease in biological quality and disruption in soil microbial activity.

Conclusions

Generally, changes in soil microbiota characteristics are strongly related to erosion-induced changes in soil physicochemical properties. Therefore, the utility of effective conservation and management measures is advocated to prevent further degradation in erosion-affected areas.

Author Contributions

Conceptualization, Morteza Saberi; methodology, Morteza Saberi and Vahid Karimian; Software and validation, Morteza Saberi and Rasol Khatibi; Investigation and resources, Mohammad Reza Dahmardeh Ghaleno; data curation, Rasol Khatibi; writing- original draft preparation, Morteza Saberi; writing-review and editing, Mohammad Reza Dahmardeh Ghaleno, Vahid Karimian and Rasol Khatibi; visualization  Mohammad Reza Dahmardeh Ghaleno; supervision, project administration and funding acquisition, Morteza Saberi. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors gratefully acknowledge the financial support of the University of Zabol (Grant code: IR-UOZ-GR-8721) for conducting this research.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct. The study involved only soil sampling and laboratory analysis, without any interaction with humans or animals; hence, ethical approval was not applicable.

Conflict of interest

The author declares no conflict of interest.

Anderson, J.P.E. 1982. Soil respiration. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9: 831–871.
Andrade-Linares, D. R., Zistl-Schlingmann, M., Foesel, B., Dannenmann, M., Schulz, S., & Schloter, M. (2021). Short term effects of climate change and intensification of management on the abundance of microbes driving nitrogen turnover in montane grassland soils. Science of the Total Environment, 780, 146672.
Banerjee, S., Misra, A., Sar, A., Pal, S., Chaudhury, S. and Dam, B. 2020. Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles. Applied Soil Ecology.152: doi 10.1016/j.apsoil.2020.103544
Bastani, M., A. Sadeghipour, N. Kamali, M. Zarafshar & S. Bazoot, 2023. How does livestock graze management affect woodland soil health? Frontiers in Forests and Global Change, 6: 1-8.
Brookes, P.C., A. Landman, G. Pruden and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6): 837–842.
Chai, C., Han, L., Xiong, C., Ge, A., Yue, X., Li, Y., ... & Song, J. (2024). Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. Science of The Total Environment, 906, 167217. https://doi.org/10.1016/j.scitotenv.2023.167217
Chen, L., T. Baoyin, & F. Xia, 2022. Grassland management strategies influence soil C, N, and P sequestration through shifting plant community composition in semi-arid grasslands of northern China. Journal of Ecological Indicator, 34: 1-12.
Das, P. P., Singh, K. R. B., Nagpure, G., Mansoori, A., Singh, R. P., Ghazi, I. A., ... & Singh, J. (2022). Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environmental Research, 214, 113821. https://doi.org/10.1016/j.envres.2022.113821
Dasgupta, D., & Brahmaprakash, G. (2021). Soil microbes are shaped by soil physico-chemical properties: A brief review of existing literature. International Journal of Plant & Soil Science, 33, 59–71.
Dungait, J. A., Ghee, C., Rowan, J. S., McKenzie, B. M., Hawes, C., Dixon, E. R., ... & Hopkins, D. W. (2013). Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry, 60, 195–201. https://doi.org/10.1016/j.ejsobi.2015.10.003
Fierer, N. (2017). Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87
Gayan, A., Borah, P., Nath, D., & Kataki, R. (2023). Soil microbial diversity, soil health and agricultural sustainability. In Sustainable Agriculture and the Environment (pp. 107–126). https://doi.org/10.1016/B978-0-323-90500-8.00006-3
Guo, Y., Wu, J., & Yu, Y. (2022). Differential response of soil microbial community structure in coal mining areas during different ecological restoration processes. Processes, 10(10), 2013. https://doi.org/10.3390/pr10102013
Hou, S., Xin, M., Wang, L., Jiang, H., Li, N., & Wang, Z. (2014). The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sinica, 34, 295–301.
Jolivet, M.; Braucher, R.; Dovchintseren, D.; Hocquet, S.; Schmitt, J.M.; Team, A. Erosion around a large-scale topographic high in a semi-arid sedimentary basin: Interactions between fluvial erosion, aeolian erosion and aeolian transport. Gemorphology 2021,386, 107747.
Kamali, N., A. Sadeghipour, M. Souri & M. Mastinu, 2022. Variations in Soil Biological and Biochemical Indicators under Different Grazing Intensities and Seasonal Changes. Land, 11: 1537.
Kennedy, A. C., & Stubbs, T. L. (2006). Soil microbial communities as indicators of soil health. Annals of Arid Zone, 45, 287–308.
Kong, W., Su, F., Zhang, Q., Ishii, S., Sadowsky, M. J., Banerjee, S., ... & Wei, X. (2022). Erosion and deposition divergently affect the structure of soil bacterial communities and functionality. Catena, 209, 105805.
Lal, R. (2001). Soil degradation by erosion. Land Degradation & Development, 12(6), 519–539. https://doi.org/10.1002/ldr.472
Lal, T.N., Hinterberger, T., Widman, G., Schr¨oder, M., Hill, N.J., Rosenstiel, W., Elger, C.E., Scholkopf, B. and Birbaumer, N., 2005. Methods towards invasive human brain computer interfaces. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17 . MIT Press, Cambridge.
Li, C., Cano, A., Acosta-Martinez, V., Veum, K. S., & Moore-Kucera, J. (2020). A comparison between fatty acid methyl ester profiling methods (PLFA and EL-FAME) as soil health indicators. Soil Science Society of America Journal, 84, 1153–1169.
Li, H.Q.; Zhu, H.S.; Wei, X.R.; Liu, B.Y.; Shao, M.A. (2021).  Soil erosion leads to degradation of hydraulic properties in the agricultural region of Northeast China. Agric. Ecosyst. Environ. 314, 107388.
Li, S., Shi, Z., Liu, W. H., Li, W., Liang, G., & Liu, K. (2025). Long-term Kentucky bluegrass cultivation enhances soil quality and microbial communities on the Qinghai-Tibet Plateau. Frontiers in Plant Science16, 1510676.
Li, Z., Xiao, H., Tang, Z., Huang, J., Nie, X., Huang, B., Ma, W., Lu, Y. and Zeng, G. 2015. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. European Journal of Soil Biology. 71: 37-44.
Makoi, J.H. and Ndakidemi, P.A. 2008. Selected soil enzymes: examples of their potential roles in the ecosystem: African Journal of Biotechnology. 7: 181-191.
Mandal, D.; Chandrakala, M.; Alam, N.M.; Roy, T.; Mandal, U. Assessment of soil quality and productivity in different phases of soil erosion with the focus on land degradation neutrality in tropical humid region of India. Catena 2021, 204, 105440.
Mandal, D.; Dadhwal, K.S. Land Evaluation and Soil Assessment for Conservation Planning and Enhanced Productivity; Central Soil and Water Conservation Research and Training Institute: Dehradun, India, 2012; p. 90.
Mandal, D.; Patra, S.; Sharma, N.K.; Alam, N.M.; Jana, C.; Lal, R. Impacts of Soil Erosion on Soil Quality and Agricultural Sustainability in the North Western Himalayan Region of India. Sustainability 2023, 15, 5430. doi.org/10.3390/su15065430
Martens, R. 1995. Current methods for measuring microbial biomass C in soil: potentials and limitations. Biology and Fertility of Soils, 19: 87–99.
Mohseni, N. (2019). Impact of water erosion on soil biological diversity in arid ecosystems. Researches in Earth Sciences, 10(2), 21–33. https://doi.org/10.52547/esrj.10.2.21
Molla, A.; Skoufogianni, E.; Lolas, A.; Skordas, K. The impact of different cultivation practices on surface runoff, soil and nutrient losses in a rotational system of legume–cereal and sunflower. Plants 2022, 11, 3513.
Moradi, H. R. , Rezaei, V. and Erfanian, M. (2024). Investigation of physicochemical characteristics of soil in badland areas formation. Researches in Earth Sciences15(3), 91-105. doi: 10.48308/esrj.2021.101282
Moreno-de las Heras, M. (2009). Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-continental environment. Geoderma, 149, 249–256.
Owens, P. N. (2020). Soil erosion and sediment dynamics in the Anthropocene: a review of human impacts during a period of rapid global environmental change. Journal of Soils and Sediments20, 4115-4143.
Park, J.-H., Meusburger, K., Jang, I., Kang, H., & Alewell, C. (2014). Erosion-induced changes in soil biogeochemical and microbiological properties in Swiss Alpine grasslands. Soil Biology and Biochemistry, 69, 382–392.
Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., ... & Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201), 1117–1123. https://doi.org/10.1126/science.267.5201.1117
Pimentel, D.; Burgess, M. Soil Erosion Threatens Food Production. Agriculture 2013, 3, 443–463.
Plotnikova, O. O., Demidov, V. V., Farkhodov, Y. R., Tsymbarovich, P. R., & Semenkov, I. N. (2024). Influence of Water Erosion on Soil Aggregates and Organic Matter in Arable Chernozems: Case Study. Agronomy14(8), 1607.
Qiu, L., Zhang, Q., Zhu, H., Reich, P. B., Banerjee, S., van der Heijden, M. G., ... & Wei, X. (2021). Erosion reduces soil microbial diversity, network complexity and multifunctionality. The ISME journal15(8), 2474-2489.
Qu, K., Guo, F., Liu, X., Lin, Y., & Zou, Q. (2019). Application of machine learning in microbiology. Frontiers in Microbiology, 10, 827.
Qu, Y., J. Tang, Z. Li, Z. Zhou, J. Wang, S. Wang and Y. Cao. 2020. Soil enzyme activity and microbial metabolic function diversity in soda saline–alkali rice paddy fields of northeast China. Sustainability, 12(23): 10095.
Rasiah, V., and Kay, B.D. 1994. Characterizing changes in aggregate stability subsequent to introduction of forages. Soil Sci. Soc. Am. J. 58: 935-942.
Řezáčová, V., Czakó, A., Stehlík, M., Mayerová, M., Šimon, T., Smatanová, M., & Madaras, M. (2021). Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Scientific Reports11(1), 12548.
Sadeghi, S., Petermann, B. J., Steffan, J., Brevik, E., & Gedeon, G. (2023). Predicting microbial responses to changes in soil physical and chemical properties under different land management. Applied Soil Ecology, 188, 104878. https://doi.org/10.1016/j.apsoil.2023.104878
Schuman, G. E., H. H. Janzen & J. E. Herrick, 2002. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmente Pollution, 116: 391–396.
Shi, W. 2011. Agricultural and ecological significance of soil enzymes: soil carbon sequestration and nutrient cycling. Soil Enzymology. 43-60.
Soltani Toularoud, A and S, Asghari. 2021. Assessment the effect of Slope aspect and position on some soil microbial indices in rangeland and forest. Environmental Erosion Research Journal, 11(1): 58–74.
Sui, X., Zhang, R., Frey, B., Yang, L., Liu, Y., Ni, H., & Li, M. H. (2021). Soil physicochemical properties drive the variation in soil microbial communities along a forest successional series in a degraded wetland in northeastern China. Ecology and Evolution, 11, 2194–2208.
Sun, S.; Zhang, G.; He, T.; Song, S.; Chu, X. Effects of Landscape Positions and Landscape Types on Soil Properties and Chlorophyll Content of Citrus in a Sloping Orchard in the Three Gorges Reservoir Area, China. Sustainability 2021, 13, 4288.
Ternan, J.L., Williams, A.G., Elmes, A., and Hartley, R. 1996. Aggregate stability of soils in central Spain and the role of land management. Earth Surface Processes and Landforms. 21: 181-193.
Tuo D, Lu Q, Wu B, Li Q, Yao B, Cheng L, Zhu J. Effects of Wind-Water Erosion and Topographic Factor on Soil Properties in the Loess Hilly Region of China. Plants (Basel). 2023 Jul 6;12(13):2568. doi: 10.3390/plants12132568. PMID: 37447129; PMCID: PMC10347127.
Veum, K. S., Lorenz, T., & Kremer, R. J. (2019). Phospholipid fatty acid profiles of soils under variable handling and storage conditions. Agronomy Journal, 111, 1090–1096.
Wauriu, M.; Lal, R. Soil organic carbon in relation to cultivation and topsoil removal on sloping lands of Kolombangara. Solomon Islands. Soil Tillage Res. 2003, 70, 19–27.
Wu, X.L.; Wei, Y.J.; Cai, C.F.; Yuan, Z.J.; Liao, Y.S.; Li, D.Q. Effects of erosion-induced land degradation on effective sediment size characteristics in sheet erosion. Catena 2020, 195, 104843.
Xiao, H., Li, Z., Chang, X., Huang, J., Nie, X., Liu, C., ... & Jiang, J. (2017). Soil erosion-related dynamics of soil bacterial communities and microbial respiration. Applied Soil Ecology, 119, 205–213.
Xu, Y., Ge, X., Gao, G., Yang, Y., Hu, Y., Li, Z., & Zhou, B. (2023). Microbial pathways driving stable soil organic carbon change in abandoned Moso bamboo forests in southeast China. Journal of Environmental Management, 345, 118890. https://doi.org/10.1016/j.jenvman.2023.118890
Yang, Q., Peng, J., Ni, S., Zhang, C., Wang, J., & Cai, C. (2024). Soil erosion-induced decline in aggregate stability and soil organic carbon reduces aggregate-associated microbial diversity and multifunctionality of agricultural slope in the Mollisol region. Land Degradation & Development, 35(11), 3714–3726. https://doi.org/10.1002/ldr.5163
Zhang, X., Pei, G., & Zhang, T. (2023). Erosion effects on soil microbial carbon use efficiency in the Mollisol cropland in northeast China. Soil Ecology Letters, 5(4). https://doi.org/10.1007/s42832-023-0176-4