تعیین نواحی مدیریتی حاصلخیزی خاک‌های شالیزار با استفاده از روش‌های زمین آماری و خوشه‌بندی فازی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه علوم و مهندسی خاک، دانشکده علوم زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

چکیده

درحال حاضر کاربرد کودهای شیمیایی بدون در نظر گرفتن تغییرات مکانی عناصر غذایی خاک در شالیزارها انجام می‏شود که مشکلات زیست‌محیطی زیادی را ایجاد می‌کند. در این تحقیق، از ادغام روش‫های زمین ‫آماری، تجزیه مؤلفه‌های اصلی و خوشه ‌بندی فازی برای مرزبندی نواحی مدیریتی 54 هکتار از اراضی شالیزاری استان مازندران استفاده شد. 85 نمونه خاک مرکب برداشته شد و خصوصیات فیزیکی و شیمیایی مهم خاک اندازه‌گیری شدند. انتخاب بهترین روش درون‌یابی برای پهنه‌بندی خصوصیات خاک، با استفاده از آماره‌هایی با بیش‌ترین دقت و همبستگی انجام شد. تحلیل مؤلفه‌های اصلی نشان داد که چهار مؤلفه با مقدار ویژه بالاتر از یک شناسایی شدند. مؤلفه اول با توجیه 78/38 درصد از تغییرات، بیشترین سهم را داشت. مؤلفه‌های دوم (82/17%)، سوم (19/14%) و چهارم (69/8%) به ترتیب در رتبه‌های بعدی قرار گرفتند. در مجموع، این چهار مؤلفه قادر به تبیین 49/79% از کل تغییرپذیری داده‌ها بودند. با استفاده از تحلیل خوشه‌بندی از نوع c-menas فازی، نواحی مدیریتی با در نظر گرفتن دو آماره‌ی شاخص کارآمدی فازی‌شدن (FPI) و شاخص آنتروپی طبقه‏بندی نرمال شده (NCE) انتخاب شدند. FPI و NCE در تعداد سه ناحیه، به‌ترتیب با مقادیر 0683/0 و 0333/0 کم‌ترین مقدار بوده و به‌همین علت تعداد بهینه ناحیه‌ها، سه ناحیه تعیین شد به‌طوری ‫که 34/18 هکتار از اراضی در ناحیه 1، 15/26 هکتار در ناحیه 2 و 12/13 هکتار در ناحیه 3 قرار گرفتند. این رویکرد با شناسایی دقیق نواحی، امکان اعمال مدیریت کودی هدفمند را فراهم کرده و می‌تواند به کاهش مصرف نهاده‌های شیمیایی و آلایندگی محیطی منجر شود. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Delineation of soil fertility management zones in paddy fields using geostatistical and fuzzy clustering methods

نویسنده [English]

  • Seyed Mostafa Emadi
Department of Soil Science and Engineering, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده [English]

Currently, the application of chemical fertilizer is carried out without taking into account the spatial variabilty of soil nutrients in paddy fields, which creates a lot of environmental problems. In this study, the integration of the geostatistics methods, principal components analysis and the fuzzy clustering were used to support the management area of 54 hectares of the Masandaran province's paddy fields. 85 compound soil samples were removed and the important physical and chemical properties of the soil were measured. The selection of the best Interpolation method for regionalization the properties of the soil was made using the most accurate and consistent statistics. Principal components analysis revealed four components with eigenvalues greater than one. The first component, explaining 38.78% of the variance, had the highest contribution. The second (17.82%), third (14.19%), and fourth (8.69%) components followed in descending order. Collectively, these four components accounted for 79.49% of the total data variability. Using fuzzy c-menas type clustering analysis, management areas were selected by considering two indexs of fuzzy performance index (FPI) and normalized classifcation entropy (NCE). The FPI and NCE were the lowest in the number of three areas, with values of 0/0683 and 0/0333, and thus the optimum number of areas, three areas were determined so that 18/34 hectares of land were placed in area 1, 26/15 hectares in area 2 and 13/12 hectare in area 3. This approach enables precise identification of management zones, facilitating targeted fertilizer management, which can reduce chemical input usage and environmental pollution.

کلیدواژه‌ها [English]

  • Site-specific management
  • Rice
  • Soil organic carbon
  • Chemical fertilizer
  • Mapping of Soil properties

Introduction

Optimum application of chemical fertilizers in low-lying alluvial soils of Mazandaran province with high water tables is of great importance in view of its environmental concerns. The site-specific management of soils can be applied when the accurate information of spatial variability of soil properties is identified. Currently, fertilizer management recommendations for rice in paddy fields of Sari Agricultural Sciences and Natural Resources University (SANRU) are being uniformly applied without consideration of spatial heterogeneity of nutrient content in soils. This study tries to integrate the geostatistics, principal component (PCA) and fuzzy c-means clustering methods for possible delineation of soil management zones (SMZs) in paddy fields.

Methodolog:

In this study, paddy fields of 54 ha were selected as the study site in SANRU and 85 soil composite samples were taken from the topsoil (0–30 cm), on an 80-m grid. Soil samples were analyzed for pH, EC, texture, organic carbon, total nitrogen (N), N-nitrate, available nutrients (P, K, Fe, Mn, Zn, and Cu) and cation-exchange capacity. The raw data passed the Kolmogorov-Smirnov normality test and their spatial variability was analyzed and spatial distribution maps were constructed using interpolation techniques. The PCA and fuzzy c-means clustering algorithm were then performed to delineate MZs, and eigenvalues were used to select the principal components (PCs) for cluster analysis. Fuzzy performance index (FPI) and normalized classification entropy (NCE) were used to determine the optimum cluster number.

Results and discussion

Mean contents of organic carbon and total nitrogen were 2.03 and 0.193 %, respectively, and had the 21.31 and 26.40 % of coefficient of variation. The coefficient of variation of N-nitrate (41%) was more than total nitrogen due to its inherent mobile characteristics. The best fitted semivariogram models for pH, EC, N-nitrate, CEC, clay, P and Mn was exponential but for OC, total N and Fe the spherical model was best fitted. The semivariogram models for Zn and Cu was Gaussian due to the high correlation and minimum RSS. The selection of best interpolation method within kriging, inverse distance within and conditional simulations techniques was conducted by consideration of mean absolute error, root mean square error, and concordance correlation coefficient. The results of PCA indicated that PCs 1, 2, 3 and 4 were considered significant (eigenvalues greater than 1.0); these together accounted for 79.49 % of total variance. The optimum number of MZs for the study area was three and analysis of variance indicated that the MZs were reasonable for the area. The MZs differed significantly with respect to studied soil properties. EC, N-nitrate, P, K and Zn were significantly higher in MZ 3 in comparison with MZs of 1 and 2. OC and total N content in MZs of 2 and 3 were significantly higher than those in MZ 1. Overall, the different management of paddy fields in the study area for three delineated zones can potentially increase the productivity of rice production and in turn, can decrease economically the fertilizers (N, P, K) application. The better nutrient contents of MZ 3 also reflected in more harvested yields compared with MZ 1 and 2.

Conclusions

Thus, the study emphasized that the methodology for delineating MZs could be helpful for site-specific soil nutrient management within the fields in low-lying flat landscape with apparent uniform soil characteristics in Mazandaran province and even in Iran. Therefore, based on the study, the following suggestions seem important in conducting future research:

  • For the regionalization of soil properties, proximal soil sensor should be used so that there is both cost and the possibility of identifying annual changes.
  • Use the integration of geostatistical methods with other fuzzy clustering algorithms such as k-means and ect.
  • Other characteristics of the land, such as the state of drainage, slope, etc., should also be used in the separation of management areas.

Author Contributions

Writing—original draft preparation, methodology, software, Conceptualization, funding acquisition, resources, S.M.E.

Data Availability Statement

All data and results are presented in the text of the article.

 

Acknowledgements

This article is derived from a research project (Code: 04-1394-01), approved by the Research and Technology Council of Sari Agricultural Sciences and Natural Resources University. I sincerely thank the university’s Vice Chancellor for Research and all individuals who contributed to this study.

Ethical considerations

The author avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares that there is no conflict of interest.

Aggag, A. M., & Alharbi, A. (2022). Spatial analysis of soil properties and site-specific management zone delineation for the South Hail region, Saudi Arabia. Sustainability14(23), 16209.
Agyeman, P. C., Khosravi, V., Michael Kebonye, N., John, K., Borůvka, L., & Vašát, R. (2022). Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil. Computers and Electronics in Agriculture, 198, 107077.
Aliyu, K. T., Y. Kamara, A., M. Jibrin, J., E. Huising, J., M. Shehu, B., Adewopo, J. B., ... & M. Samndi, A. (2020). Delineation of soil fertility management zones for site-specific nutrient management in the maize belt region of Nigeria. Sustainability12(21), 9010.
Ayoubi, M., Sokouti, R., & Malakouti, M. J. (2016). Study and prediction of the spatial variation of soil organic matter, phosphorus and potassium, case study: North part of of Urmia Plain [Research]. Journal of Water and Soil Science, 20(76), 177-187. (In Persian).
Bangroo, S. A., Sofi, J. A., Bhat, M. I., Mir, S. A., Mubarak, T., & Bashir, O. (2021). Quantifying spatial variability of soil properties in apple orchards of Kashmir, India, using geospatial techniques. Arabian Journal of Geosciences, 14(19), 2047.
Barman, A., Sheoran, P., Yadav, R. K., Abhishek, R., Sharma, R., Prajapat, K., Singh, R. K., & Kumar, S. (2021). Soil spatial variability characterization: Delineating index-based management zones in salt-affected agroecosystem of India. Journal of Environmental Management, 296, 113243.
Barrena-González, J., Lavado Contador, J. F., & Pulido Fernández, M. (2022). Mapping soil properties at a regional scale: Assessing deterministic vs. geostatistical interpolation methods at different soil depths. Sustainability14(16), 10049.
Bhagwan, V. P. V., Theerthala, A. A., Devi, U. D. M. U., Neelima, T. L. T. L., & Chary, D. S. (2023). Delineation and evaluation of management zones for site specific nutrient management in maize tracts of Northern Telangana using geostatistical and fuzzy c mean cluster approach. 27 June 2023, PREPRINT (Version 1) available at Research Square.
Bottega, E. L., Marin, C. K., Oliveira, Z. B. D., Lamb, C. D. C., & Amado, T. J. C. (2023). Soil density characterization in management zones based on apparent soil electrical conductivity in two field systems: Rainfeed and center-pivot irrigation. AgriEngineering5(1), 460-472.
Bottega, E. L., Safanelli, J. L., Zeraatpisheh, M., Amado, T. J. C., Queiroz, D. M. d., & Oliveira, Z. B. d. (2022). Site-Specific Management Zones Delineation Based on Apparent Soil Electrical Conductivity in Two Contrasting Fields of Southern Brazil. Agronomy12(6), 1390.
Bremner, J.M., & Mulvaney, R.G. (1982). Nitrogen total. Pp. 575-624. In: Page, A. L., Miller, R. H., Keeney, D. R. (eds.) Methods of Soil Analysis. American Society of Agronomy. Madison. WI.
Breunig, F. M., Galvão, L. S., Dalagnol, R., Dauve, C. E., Parraga, A., Santi, A. L., Della Flora, D. P., & Chen, S. (2020). Delineation of management zones in agricultural fields using cover–crop biomass estimates from PlanetScope data. International Journal of Applied Earth Observation and Geoinformation, 85, 102004.
Brunelle, T., Chakir, R., Carpentier, A., Dorin, B., Goll, D., Guilpart, N., Maggi, F., Makowski, D., Nesme, T., Roosen, J., & Tang, F. H. M. (2024). Reducing chemical inputs in agriculture requires a system change. Communications Earth & Environment, 5(1), 369.
Cammarano, D., Zha, H., Wilson, L., Li, Y., Batchelor, W. D., & Miao, Y. (2020). A remote sensing-based approach to management zone delineation in small scale farming systems. Agronomy, 10(11), 1767.
Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D., Thompson, E., & Ashraf, I. (2023). A systematic literature review on identifying patterns using unsupervised clustering algorithms: A data mining perspective. Symmetry, 15, 1679.
Davatgar, N., Neishabouri, M. R., & Sepaskhah, A. R. (2012). Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma173, 111-118.
Dettori, M., Cesaraccio, C., Motroni, A., Spano, D., & Duce, P. (2011). Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy. Field Crops Research, 120(1), 179-188.
Ebrahimzadeh, G., Yaghmaeian Mahabadi, N., Bayat, H., & Matinfar, H. R. (2023). Using topographical and spectral indices to delineate management zone in drylands wheat cultivated area, Qazvin. Iranian Journal of Soil and Water Research54(7), 1005-1026. (In Persian).
Filintas, A., Gougoulias, N., Kourgialas, N., & Hatzichristou, E. (2023). management zones delineation, correct and incorrect application analysis in a coriander field using precision agriculture, soil chemical, granular and hydraulic analyses, fuzzy k-means zoning, factor analysis and geostatistics. Water15(18), 3278.
Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA) software for subfield management zone delineation. Agronomy Journal96(1), 100-108.
Fu, Q., Wang, Z., & Jiang, Q. (2010). Delineating soil nutrient management zones based on fuzzy clustering optimized by PSO. Mathematical and computer modelling51(11-12), 1299-1305.
Gee, G.W., & Buader, J. (1982). Particle Size Analysis. Pp. 384-412, A. L., Miller, R. H., Keeney, D. R. (eds.) Methods of Soil Analysis. American Society of Agronomy. Madison. WI.
Getahun, S., Kefale, H., & Gelaye, Y. (2024). Application of Precision Agriculture Technologies for Sustainable Crop Production and Environmental Sustainability: A Systematic Review. The Scientific World Journal, 2024(1), 2126734.
Huguet, F., Plà-Aragonés, L. M., Albornoz, V. M., & Pohl, M. (2025). A genetic algorithm for site-specific management zone delineation. Mathematics13(7), 1064.
Ichami, S. M., Shepherd, K. D., Hoffland, E., Karuku, G. N., & Stoorvogel, J. J. (2020). Soil spatial variation to guide the development of fertilizer use recommendations for smallholder farms in western Kenya. Geoderma regional22, e00300.
Inman, D., Khosla, R., Reich, R., & Westfall, D. G. (2008). Normalized difference vegetation index and soil color‐based management zones in irrigated maize. Agronomy journal100(1), 60-66.
Inman, D., Khosla, R., Reich, R., & Westfall, D. G. (2008). Normalized Difference Vegetation Index and Soil Color-Based Management Zones in Irrigated Maize. Agronomy Journal, 100(1), 60-66.
Islam, S. (2025). Agriculture, food security, and sustainability: a review. Exploration of Foods and Foodomics3, 101082.
Jena, R. K., Moharana, P. C., Pradhan, U. K., Sharma, G. K., Ray, P., Roy, P. D., & Ghosh, D. (2024). Soil fertility mapping and applications for site-specific nutrient management: a case study. In Remote Sensing of Soils (pp. 65-80). Elsevier.
Khan, H., Esau, T. J., Farooque, A. A., Zaman, Q. U., Abbas, F., & Schumann, A. W. (2023). Chapter 2 - Soil spatial variability and its management with precision agriculture. In Q. Zaman (Ed.), Precision Agriculture (pp. 19-36). Academic Press.
Khazaie, E., Bostani, A. A., & Davatgar, N. (2017). Geostatic and GIS evaluation of spatial variability of nitrogen, phosphorus, potassium, and cation exchange capacity in agro-industrial land of Sharif Abad in Qazvin. Iranian Journal of Soil Research31(2), 195-213. (In Persian).
Kyaw, T., Ferguson, R. B., Adamchuk, V. I., Marx, D. B., Tarkalson, D. D., & McCallister, D. L. (2008). Delineating site-specific management zones for pH-induced iron chlorosis. Precision Agriculture9, 71-84.
Lindsay, W. L., & Norvell, W. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil science society of America journal42(3), 421-428.
Liu, W., Lu, F., Chen, G., Xu, X., & Yu, H. (2021). Site-specific management zones based on geostatistical and fuzzy clustering approach in a coastal reclaimed area of abandoned salt pan. Chilean journal of agricultural research81(3), 420-433.
Ma, B., Karimi, M. S., Mohammed, K. S., Shahzadi, I., & Dai, J. (2024). Nexus between climate change, agricultural output, fertilizer use, agriculture soil emissions: Novel implications in the context of environmental management. Journal of cleaner production, 450, 141801.
Martínez-Casasnovas, J. A., Escolà, A., & Arnó, J. (2018). Use of farmer knowledge in the delineation of potential management zones in precision agriculture: A case study in maize (Zea mays L.). Agriculture8(6), 84.
Metwally, M. S., Shaddad, S. M., Liu, M., Yao, R.-J., Abdo, A. I., Li, P., Jiao, J., & Chen, X. (2019). Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability11(24), 7084.
Moharana, P. C., Jena, R. K., Pradhan, U. K., Nogiya, M., Tailor, B. L., Singh, R. S., & Singh, S. K. (2020). Geostatistical and fuzzy clustering approach for delineation of site-specific management zones and yield-limiting factors in irrigated hot arid environment of India. Precision Agriculture21, 426-448.
Nelson, D.W., & Sommers, L.E. (1982). Total carbon, organic carbon, and organic matter. Pp. 539-579. In: Page. A. L., Miller. RH. Keeney. D.R. (eds). Methods of Soil Analysis. Part II. 2th ed. ASA. SSSA. Madison. WI.
Nogueira Martins, R., Magalhaes Valente, D. S., Fim Rosas, J. T., Souza Santos, F., Lima Dos Santos, F. F., Nascimento, M., & Campana Nascimento, A. C. (2020). Site-Specific nutrient management zones in soybean field using multivariate analysis: An approach based on variable rate fertilization. Communications in Soil Science and Plant Analysis51(5), 687-700.
Odeh, I. O. A., McBratney, A. B., & Chittleborough, D. J. (1992). Soil pattern recognition with fuzzy‐c‐means: Application to classification and soil‐landform interrelationships. Soil Science Society of America Journal56(2), 505-516.
Ohana-Levi, N., Bahat, I., Peeters, A., Shtein, A., Netzer, Y., Cohen, Y., & Ben-Gal, A. (2019). A weighted multivariate spatial clustering model to determine irrigation management zones. Computers and Electronics in Agriculture162, 719-731.
Oldoni, H., Terra, V. S. S., Timm, L. C., Júnior, C. R., & Monteiro, A. B. (2019). Delineation of management zones in a peach orchard using multivariate and geostatistical analyses. Soil and Tillage Research191, 1-10.
Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. Pp. 403-430. In: Page et al., (ed.) Methods of Soil Analysis. Part 2. Monograph no 9. American Society of Agronomy. Madison. WI.
Ortega, R. A., & Santibanez, O. A. (2007). Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in agriculture58(1), 49-59.
Ouazaa, S., Jaramillo-Barrios, C. I., Chaali, N., Amaya, Y. M. Q., Carvajal, J. E. C., & Ramos, O. M. (2022). Towards site specific management zones delineation in rotational cropping system: Application of multivariate spatial clustering model based on soil properties. Geoderma Regional, 30, e00564.
Owliaie, H., Salehi, A. & Zareian, G. (2024). Assessment of geostatistical models for zoning spatial distribution of some soil properties in Darengan region with different land uses, Fars province. Iranian Journal of Soil and Water Research55(1), 97-116. (In Persian).
Peralta, N. R., & Costa, J. L. (2013). Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Computers and electronics in agriculture99, 218-226.
Raj, A., Singh, S. P., Singh, V. P., Pratap, T., Bhattacharya, P., & Dey, P. (2024). Combining Site-Specific Nutrient Allocation Tools Can Decrease Input Demands in No-Till Wheat Farming. Communications in Soil Science and Plant Analysis56(1), 90–107.
Reyniers, M., Maertens, K., Vrindts, E., & De Baerdemaeker, J. (2006). Yield variability related to landscape properties of a loamy soil in central Belgium. Soil and Tillage Research88(1-2), 262-273.
Richards, L. A. (1954). Diagnosis and Improvement of. Saline and Alkali Soils. Handbook60, 129-134.
Schenatto, K., Souza, E. G. d., Bazzi, C. L., Betzek, N. M., Gavioli, A., & Beneduzzi, H. M. (2017). Use of the farmer’s experience variable in the generation of management zones. Semina: Ciências Agrárias, 38(4Supl1), 2305-2322.
Serrano, J., Shahidian, S., Paixão, L., Marques da Silva, J., & Moral, F. (2022). Management zones in pastures based on soil apparent electrical conductivity and altitude: NDVI, soil and biomass sampling validation. Agronomy, 12(4), 778.
Shahinzadeh, N., Babaeinejad, T., Mohsenifar, K., & Ghanavati, N. (2022). Spatial variability of soil properties determined by the interpolation methods in the agricultural lands. Modeling Earth Systems and Environment, 8(4), 4897-4907.
Shashikumar, B. N., Kumar, S., George, K. J., & Singh, A. K. (2023). Soil variability mapping and delineation of site-specific management zones using fuzzy clustering analysis in a Mid-Himalayan Watershed, India. Environment, Development and Sustainability, 25(8), 8539-8559.
Shukla, A. K., Behera, S. K., Kumar, P., Mishra, R., Shukla, V., Pachauri, S. P., Sikaniya, Y., Srivastava, P. C., Sikarwar, A., Kumar, D., & Datta, S. P. (2025). Delineation of Management Zones for Site-Specific Soil Nutrient Management for Sustainable Crop Production. Land Degradation & Development, 36(1), 231-248.
Srinivasan, R., Shashikumar, B. N., & Singh, S. K. (2022). Mapping of soil nutrient variability and delineating site-specific management zones using fuzzy clustering analysis in eastern coastal region, India. Journal of the Indian Society of Remote Sensing, 50(3), 533-547.
Vasu, D., Sahu, N., Tiwary, P., & Chandran, P. (2021). Modelling the spatial variability of soil micronutrients for site specific nutrient management in a semi-arid tropical environment. Modeling Earth Systems and Environment, 7(3), 1797-1812.
Vendrell, P. F., & Zupancic, J. (1990). Determination of soil nitrate by transnitration of salicylic acid. Communications in Soil Science and Plant Analysis, 21(13-16), 1705-1713.
Westerman, R. L. (1991). Soil Testing and Plant Analysis, Third Edition. Soil Science, 152(2).
Zeraatpisheh, M., Bakhshandeh, E., Emadi, M., Li, T., & Xu, M. (2020). Integration of PCA and fuzzy clustering for delineation of soil management zones and cost-efficiency analysis in a citrus plantation. Sustainability, 12(14), 5809.