نقشه‌برداری رقومی شوری خاک سطحی در بخش مرکزی استان خوزستان با استفاده از الگوریتم‌های طبقه‌بندی نظارت شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران

2 استاد تمام گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران

3 استاد تمام گروه مهندسی علوم خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران

4 مدرسه محیط زیست، کالج کشاورزی آنتاریو، دانشگاه گوئلف، آنتاریو، کانادا

چکیده

شوری خاک یکی از عوامل اصلی تخریب اراضی در مناطق خشک و نیمه‌‌ خشک به شمار می‌رود. دورسنجی، نقش مهمی در شناسایی و طبقه‌بندی خاک‌های شور ایفا می‌کند. هدف این مطالعه، نقشه‌برداری رقومی شوری خاک سطحی در شهرستان باوی واقع در بخش مرکزی استان خوزستان می‌باشد. ابتدا 350 نمونه خاک با روش ابر مکعب لاتین مشروط (cLHS) جمع‌آوری شده و مجموعه‌ای از متغیرهای محیطی به وسیله داده‌های ماهواره‌ای و توپوگرافی استخراج گردید. سپس، برای کاهش حجم داده‌ها و تفسیرپذیری آن‌ها، از روش تجزیه و تحلیل مؤلفه‌های اصلی (PCA) استفاده شد. در این مطالعه، نقشه‌برداری رقومی شوری خاک با استفاده از الگوریتم‌های طبقه‌بندی نظارت شده پیکسل‌‌پایه و شیءگرا انجام شد. همچنین، تأثیر تعداد نمونه‌های آموزشی بر عملکرد الگوریتم‌های طبقه‌بندی مورد بررسی قرار گرفت. نتایج تحلیل PCA نشان داد که باندهای اولیه (PC1-PC6) بیشترین حجم اطلاعات را برای طبقه‌بندی داشته‌اند. همچنین، شاخص روشنایی (BI)، شاخص ‌پوشش‌گیاهی شوری خاک (VSSI)، شاخص تفاوت پوشش‌گیاهی (DVI) و شاخص تفاضل نرمال‌شده پوشش‌گیاهی سبز (GNDVI) با بیشترین بار عاملی (99/0)، مهمترین متغیرهای تأثیرگذار در شناسایی و نقشه‌برداری شوری خاک در منطقه بوده‌اند. نتایج پژوهش نشان داد که کاهش تعداد نمونه‌های آموزشی، دقت الگوریتم‌های طبقه‌بندی را اندکی کاهش داده است. در روش‌ طبقه‌بندی شیءگرا، الگوریتم ماشین بردار پشتیبان (SVM) و در روش‌ طبقه‌بندی پیکسل‌‌پایه، الگوریتم جنگل تصادفی (RF)، بهترین عملکرد را در تشخیص و جداسازی کلاس‌های شوری خاک داشته‌اند. نتایج بررسی شوری خاک در نقشه الگوریتم ماشین بردار پشتیبان نشان داد که خاک‌های با کلاس شوری خیلی شدید (dS/m 16 <)، دارای بیشترین فراوانی در منطقه هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Digital mapping of surface soil salinity in the central part of Khuzestan Province using supervised image classification algorithms

نویسندگان [English]

  • Mohammad Abiyat 1
  • Saeid Hojati 2
  • Ahmad Landi 3
  • Asim Biswas 4
1 Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Khuzestan, Iran
2 Full Professor, Department of Soil Science, College of Agriculture, Shahid Chamran University of Ahvaz
3 Full Professor, Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Khuzestan, Iran
4 School of Environmental Science, Ontario Agricultural College, University of Guelph, Guelph N1G2W1, Ontario, Canada
چکیده [English]

Soil salinity is a major factor contributing to land degradation in arid and semi-arid regions. Remote sensing plays a crucial role in the identification and classification of saline soils. This study aims to digitally mapping of surface soil salinity in Bavi County, located in the central part of Khuzestan Province. First, 350 soil samples were collected using the Conditioned Latin Hypercube Sampling (cLHS) and a set of environmental variables were extracted using satellite and topographic data. Then, to reduce data dimensionality and enhance interpretability, Principal Component Analysis (PCA) was applied. In this study, soil salinity mapping was performed using pixel-based and object-oriented supervised classification algorithms. Additionally, the impact of training sample size on the performance of classification algorithms was investigated. The PCA results indicated that the first principal components (PC1–PC6) contained the highest information content for classification. Furthermore, the Brightness Index (BI), Vegetation Soil Salinity Index (VSSI), Difference Vegetation Index (DVI), and Green Normalized Difference Vegetation Index (GNDVI) exhibited the highest factor loadings (0.99), highlighting their importance in detecting and mapping soil salinity in the study area. The results of the research demonstrated that reducing the training sample size decreased classification accuracy. Among object-based approaches, the Support Vector Machine (SVM) algorithm performed the best, while the Random Forest (RF) algorithm achieved the highest accuracy among pixel-based methods in identifying and separating soil salinity classes. The soil salinity map generated by the SVM algorithm indicated that the "Extremely Saline" soils (>16 dS/m) were the most prevalent in the region.

کلیدواژه‌ها [English]

  • Environmental Variables
  • Principal Component Analysis
  • Pixel-Based Method
  • Object-Oriented Analysis

 

Introduction

Soil salinity is one of the major causes of land degradation in arid and semi-arid regions, negatively impacting agricultural productivity. Remote sensing and satellite imagery are essential tools for monitoring soil salinity, as image classification techniques enable the accurate identification and detection of saline areas. Bavi County, located in Khuzestan Province is a key agricultural region, making soil salinity assessment crucial for farmers to adopt sustainable soil and water management practices and prevent crop yield reduction. This study aims to create a digital map of surface soil salinity using supervised classification algorithms.

Methodology

First, 350 soil samples were collected from a depth of 0–10 cm using conditioned Latin hypercube sampling. In the laboratory, electrical conductivity (EC) was measured in a 1:2 soil-to-water extract to determine soil salinity. Environmental variables were derived from remote sensing indices based on satellite imagery and topographic features extracted from a digital elevation model (DEM). Principal Component Analysis (PCA) was applied to reduce data dimensionality and enhance interpretability. Initially, 80% of the data were used for training, and 20% for model validation. To evaluate the impact of sample size on algorithm performance, an alternative split of 70% training and 30% testing was also applied. For soil salinity classification, both pixel-based supervised methods (Maximum Likelihood, Minimum Distance, Decision Tree, Random Forest, Artificial Neural Network, and Spectral Angle Mapper) and object-based approaches (K-Nearest Neighbors and Support Vector Machine) were employed. Model performance was assessed using overall accuracy and the Kappa coefficient.

Results and Discussion

Field data analysis revealed an average EC of 28.51 dS/m, indicating an extremely soil saline class. PCA results showed that the first six principal components (PC1–PC6), with eigenvalues greater than one and cumulative variance exceeding 91%, contained the most significant information for classification. Key environmental variables influencing salinity detection included the Brightness Index (BI), Vegetation Soil Salinity Index (VSSI), Difference Vegetation Index (DVI), and Green Normalized Difference Vegetation Index (GNDVI), all of which exhibited high factor loadings (0.99). After selecting the optimal components, these were compiled into a multi-band data_set for supervised classification. The results indicated that a reduction in the number of training samples decreased classification accuracy. Among the classification methods, the object-based Support Vector Machine (SVM) and pixel-based Random Forest (RF) achieved the highest accuracy in distinguishing salinity classes. In contrast, the Spectral Angle Mapper (SAM) algorithm performed the poorest in detecting soil salinity. The SVM-derived salinity map revealed that most of the study area falls under the extremely saline class (greater than 16 dS/m), highlighting the critical salinity status of the region. The widespread distribution of extreme salinity may be attributed to anthropogenic activities (e.g., irrigation with saline water) and natural factors (e.g., drought). Visual assessment indicated that severely saline soils were predominantly located in the western part of the study area.

Conclusion

This study demonstrated that integrating remote sensing data and topographic variables with advanced classification methods, particularly object-based approaches, provide an effective tool for monitoring soil salinity in arid regions. The resulting salinity maps can support soil and land management in affected areas. Implementing management strategies such as cultivating salt-tolerant crops, improving drainage systems in highly saline zones, and continuous monitoring using updated maps can contribute to soil conservation and mitigate land degradation.

Author Contributions

First author: Collecting and analyzing data, writing — original draft preparation, review, and editing. Second and Third authors: Conceptualization, writing — review and editing, methodology, guidance, research oversight, project administration. Fourth author: Advisement, writing — editing.

Data Availability Statement

Data is available on request from the authors.

Acknowledgements

The authors would like to thank the Deputy of Research Technology and Social Relationships at Shahid Chamran University of Ahvaz (SCU.AS1403.365), as well as the Iran National Science Foundation (INSF, Project No. 4038641), for their financial support of this research.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abbas, A., and Khan, S. (2007). Using remote sensing techniques for appraisal of irrigated soil salinity. MODSIM 2007 International Congress on Modelling and Simulation, 2632–2638.
Abbas, A., Khan, S., Hussain, N., Hanjra, M. A., and Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach. *Physics and Chemistry of the Earth, Parts A/B/C, 55–57, 43–52.
Allbed, A., Kumar, L., and Aldakheel, Y. Y. (2014). Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 230–231, 1–11.
Banaei, M. H. (1998). Map of moisture and temperature regimes of Iranian soils. Soil and Water Research Institute. (In Persian)
Baret, F., and Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2–3), 161–173.
Bertani, T. C., Novack, T., Hayakawa, E. H., and Zani, H. (2010). Detection of saline and non-saline lakes on the Pantanal of Nhecolândia (Brazil) using object-based image analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38.
Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and regression trees. Wadsworth.
Chaudhuri, B. B., and Sarkar, N. (1995). Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 72–77.
Chatrenor, M., Landi, A., Farrokhian Firouzi, A., Noroozi, A. and Bahrami, H. (2019). Using VIS-NIR spectroscopy to model soil salinity in dust-prone areas of Khuzestan Province. Iranian Journal of Soil and Water Research, 50(8), 1951–1962. (In Persian)
Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
Cover, T. M., and Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1), 21–27.
Crippen, R. E. (1990). Calculating the vegetation index faster. Remote Sensing of Environment, 34(1), 71–73.
Dehni, A., and Lounis, M. (2012). Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. Procedia Engineering, 33, 188–198.
Douaoui, A. E. K., Nicolas, H., and Walter, C. (2006). Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134, 217–230.
Elhag, M. (2016). Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia. Journal of Sensors, 2016, 7596175.
Elnaggar, A. A., and Noller, J. S. (2009). Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sensing, 2(1), 151–165.
Food and Agriculture Organization (FAO). (2015). Global Soil Partnership: Status of the World's Soil Resources. Food and Agriculture Organization of the United Nations.
Forouzani, M., and Mardani, M. (2021). The effects of climate change adaptation behavior on agricultural water consumption in Bavi County. The Second National Conference on Agricultural and Environmental Research in Iran, Khuzestan University of Agricultural Sciences and Natural Resources.
Gorji, T., Sertel, E., and Tanik, A. (2017). Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecological Indicators, 74, 384–391.
Haykin, S. (1999). Neural networks: A comprehensive foundation (2nd ed.). Prentice Hall.
Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., Rengasamy, P., Ben-Gal, A., Assouline, S., Javaux, M., and Minhas, P. S. (2021). Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191.
Hosseini, S. K., Forouzani, M. and Abdeshahi, A. (2023). Investigating the effect of livelihood assets on diversity of villagers' livelihoods (the case of Bavi County). Iranian Journal of Agricultural Economics and Development Research, 54(2), 487-503. (In Persian)
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., and de Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260.
Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50(4), 663–666.
Katawatin, R., and Kotrapat, W. (2005). Use of LANDSAT-7 ETM+ with ancillary data for soil salinity mapping in Northeast Thailand. Proceedings of SPIE, 5852, 708–717.
Khan, N. M., Rastoskuev, V. V., Shalina, E. V., and Sato, Y. (2001). Mapping salt-affected soils using remote sensing indicators. In Proceedings of the 22nd Asian Conference on Remote Sensing (Vol. 1, pp. 5–9).
Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., and Goetz, A. F. H. (1993). The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.
Lohrabi, Y., Abasi, M., Soltani, A., and Riyahi bakhtyari, H. R. (2018). Determination of the most suitable method for forest type mapping in central Zagros using landsat-8 satellite Images. Forest Research and Development, 4(2), 191-205. (In Persian)
Ma, G., Ding, J., Han, L., Zhang, Z., and Ran, S. (2021). Digital mapping of soil salinization based on Sentinel-1 and Sentinel-2 data combined with machine learning algorithms. Regional Sustainability, 2(2), 177–188.
Marashi, A., Mahmoodi, A., and Eslami, M. R. (2012). Reduction of groundwater level by selecting potential cropping patterns in Bavi County. National Conference on Climate Change and Sustainable Agricultural and Natural Resources Development Engineering, Hamedan, Iran. (In Persian)
Mather, P. M., and Tso, B. (2009). Classification methods for remotely sensed data (2nd ed). CRC Press.
McDaniel, K. C., and Haas, R. H. (1982). Assessing mesquite-grass vegetation condition from Landsat. Photogrammetric Engineering and Remote Sensing, 48(3), 441–450.
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.
Metternicht, G. I., and Zinck, J. A. (2003). Remote sensing of soil salinity: Potentials and constraints. Remote Sensing of Environment, 85(1), 1–20.
Minasny, B., and McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32(9), 1378–1388.
Mohammadzadeh, K. and Feizizadeh, B. (2020). Identifying and Monitoring Soil Salinization in the Eastern Part of Urmia lake Together With Comparing Capability of Object Based Image Analysis Techniques. Journal of Water and Soil Conservation, 27(3), 65-84. (In Persian)
Mmombeni, M., Arekhi, S. and Arami, S. A. (2022). Changes in the salinity using remote sensing and GIS (Case study: South Khuzestan). Desert Ecosystem Engineering, 4(6), 27-34. (In Persian)
Moradi, A. R., Jafari, M., Arzani, H., and Ebrahimi, M. (2016). Assessment of land use changes into dry land using satellite images and Geographical information system (GIS). RS and GIS Techniques for Natural Resources, 7(1), 89-100. (In Persian)
Mudler, V. L., Bruin, S., and Schaepman, M. E. (2013). Representing major soil variability at regional scale by constrained Latin Hypercube Sampling of remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 21, 301-310.
Nguyen, K. A., Liou, Y. A., Tran, H. P., Hoang, P. P., and Nguyen, T. H. (2020). Soil salinity assessment by using near-infrared channel and vegetation soil salinity index derived from Landsat 8 OLI data: A case study in the Tra Vinh Province, Mekong Delta, Vietnam. Progress in Earth and Planetary Science, 7(1), 1–16.
Pahlavan Rad, M. R., Khormali, F., Toomanian, N., Kiani, F., and Komaki, Ch. B. (2015). Digital soil mapping using Random Forest model in Golestan province. Journal of Water and Soil Conservation, 21(6), 73-93.
Peng, J., et al. (2019). Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 337, 1309–1319.
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In Methods of soil analysis: Part 3 Chemical methods (pp. 417–435). SSSA.
Richards, J. A., and Jia, X. (2006). Remote sensing digital image analysis: An introduction (4th ed.). Springer.
Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. LWW.
Rostami, R., Mohammad Khorshiddoust, A. and Bakuoyi, M. (2023). Investigating the trend of land use changes in eastern Lake of Urmia with an emphasis on soil salinity by object-oriented method. Journal of Geography and Planning, 26(82), 83-93.
Saadat, S., esmaeelnejad, L., rezaei, H. and Mirkhani, R. (2024). Monitoring soil Salinity of the Sistan plain using field data and remote sensing. Iranian Journal of Soil and Water Research, 55(8), 1297-1309. (In Persian)
Savari, M., Sheheytavi, A., Shokati Amghani, M. (2023). Factors underpinning Iranian farmers’ intention to conserve biodiversity at the farm level. Journal for Nature Conservation, 73, 1-10.
Scudiero, E., Skaggs, T. H., and Corwin, D. L. (2015). Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance. Remote Sensing of Environment, 169, 335–343.
Shahid, S. A., Zaman, M., and Heng, L. (2018). Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 43–53). Springer.
Shahryari, A. (2013). Investigation the spatial changes of some soil properties in Atabiyeh lands (Khuzestan Province) using geostatistical, interpolation and GIS methods. Master's thesis in soil science, Faculty of Agriculture, Shahid Chamran University of Ahvaz.
Shammi, M., Rahman, M., Bondad, S. E., and Bodrud-Doza, M. (2019). Impacts of salinity intrusion in community health: A review of experiences on drinking water sodium from coastal areas of Bangladesh. Healthcare, 7(1), 50.
Shao, H., Chu, L., Lu, H., Qi, W., Chen, X., Liu, J., Kuang, S., Tang, B., and Wong, V. (2019). Towards sustainable agriculture for the salt-affected soil. Land Degradation and Development, 30(5), 574–579.
Singh, A. (2022). Soil salinity: A global threat to sustainable development. Soil Use and Management, 38(1), 39–67.
Statistical Yearbook of Khuzestan Province. (2022). Statistical Center of Iran. (In Persian)
Stals, J. P. (2007). Mapping potential soil salinization using rule based object-oriented image analysis [Doctoral dissertation, Stellenbosch University].
Stavi, I., Thevs, N., and Priori, S. (2021). Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9, 712831.
Taghadosi, M. M., Hasanlou, M. and Eftekhari, K. (2019). Evaluating and comparing supervised classification algorithms with the aim of mapping soil salinity levels using Sentinel-2 satellite imageries. Scientific- Research Quarterly of Geographical Data (SEPEHR), 28(110), 37-52. (In Persian)
Tarolli, P., Luo, J., Park, E., Barcaccia, G., and Masin, R. (2024). Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience, 27(2).
Thaker, P. N., Brahmbhatt, N., and Shah, K. (2021). A review: Impact of soil salinity on ecological, agricultural and socio-economic concerns. International Journal of Advanced Research, 9, 979–986.
Tomic, O., Luciano, G., Nilsen, A., Hyldig, G., Lorensen, K., and Næs, T. (2009). Analysing sensory panel performance in a proficiency test using the PanelCheck software. European Food Research and Technology, 228(3), 497–511.
United States Geological Survey (USGS). (2022). Landsat 8 data users handbook (Version 5.0).
Volschenk, T., Fey, M. V., and Zietsman, H. L. (2005). Situation analysis of problems for water quality management in the Lower Orange River region (WRC Report No. 1236/1/05). Water Research Commission.
Wicaksono, P., and Hafizt, M. (2017). Dark target effectiveness for dark-object subtraction atmospheric correction method on mangrove above-ground carbon stock mapping. IET Image Processing, 12(4), 582–587.
Wu, W., et al. (2014). Mapping soil salinity changes using remote sensing in Central Iraq. Geoderma Regional, 2–3, 21–31.
Yang, L., Li, X., Shi, J., Shen, F., Qi, F., Gao, B., Chen, Z., Zhu, A., and Zhou, C. (2020). Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method. Geoderma, 369, 114337.
Zhang, J., and Jia, L. (2014). A comparison of pixel-based and object-based land cover classification methods in an arid/semi-arid environment of Northwestern China. 2014 3rd International Workshop on Earth Observation and Remote Sensing Applications, 246–250.
Zhang, T., Qi, J., Gao., Y., Ouyang, Z., Zeng, S., and Zhao, B. (2011). Detecting soil salinity with remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 289–297.
Zhang, Z., Niu, B., Li, X., Kang, X., and Hu, Z. (2022). Estimation and dynamic analysis of soil salinity based on UAV and Sentinel-2A multispectral imagery in the coastal area, China. Land, 11(12), 2307.