تأثیر پرایمینگ آمینوکلات‌ روی و کود سولفات روی بر شکل‌های شیمیایی روی در فاز محلول خاک و همبستگی آن با غلظت روی در آفتابگردان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز ، ایران

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز‌، ایران

4 استاد گروه مهندسی تولید و ژنتیک گیاهی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز‌، ایران

5 استادیار گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز‌، ایران

چکیده

اختلال در جذب روی (Zn) توسط گیاه، یک تنش تغذیه­ای رایج در خاک­های آهکی است. اتخاذ روش­های نوین کود­دهی، به منظور افزایش جذب روی توسط گیاه، غنی‌سازی و عرضه بیشتر روی در چرخه غذایی انسان، امری ضروری است. این آزمایش با هدف بررسی اثربخشی پرایمینگ بذر با آمینوکلات­های روی بر غلظت روی در دانه آفتابگردان و نیز تعیین شکل­های شیمیایی مختلف روی در محلول خاک، در قالب طرح بلوک­های کامل تصادفی و با سه تکرار طی دوره کشت زمستان تا بهار سال 1400 -1401 در مزرعه تحقیقاتی دانشگاه شهید چمران اهواز انجام شد. تیمارهای آزمایش شامل پرایمینگ بذر با محلول­هایی با غلظت معادل دو درصد روی از آمینوکلاتهای گلایسین- روی [Zn (Gly)2]  و متیونین- روی [Zn (Met)2]، کود شیمیایی سولفات روی و تیمار شاهد (بدون پرایمینگ) بود. به منظور تعیین گونه­های شیمیایی غالب روی در فاز محلول خاک، از نرم افزار ژئوشیمیایی Visual MINTEQ استفاده شد. نتایج نشان داد که پرایمینگ بذر با آمینوکلات­های روی به ویژه آمینوکلات متیونین- روی به طور معنی­داری pH خاک را کاهش داده و موجب افزایش معنی­دار کربن آلی محلول (8/41 درصد)، روی محلول خاک (9/46 درصد)، روی قابل دسترس خاک (3/30 درصد) و نیز غلظت روی در برگ (7/65 درصد) و دانه (18/8 درصد) نسبت به تیمار سولفات روی شد. پرایمینگ بذر با آمینوکلات­های روی و کود شیمیایی سولفات روی، به طور معنی­داری درصد توزیع گونه­های شیمیایی روی را در محلول خاک تحت تاثیر قرار داد. بیشترین افزایش غلظت گونه آزاد روی (Zn2+) ‌، گونه روی پیوند یافته با ماده آلی محلول (Zn-DOM) و گونه ZnSO4 به عنوان گونه­های غالب روی در فاز محلول خاک، با کاربرد تیمار پرایمینگ آمینوکلات متیونین- روی بدست آمد. همچنین نتایج حاکی از وجود همبستگی مثبت و معنی­دار بین غلظت گونه­هایZn2+  و  Zn-DOMبه عنوان گونه­های قابل دسترس روی، با غلظت روی در برگ و دانه آفتابگردان بود. بر اساس نتایج آزمایش حاضر، پرایمینگ بذر با آمینوکلات‌های روی، به ویژه آمینوکلات متیونین- روی، می‌تواند به عنوان یک راهکار کارآمد برای بهبود تغذیه گیاه، غنی‌سازی دانه و در نهایت ارتقای کیفیت تغذیه‌ای محصول آفتابگردان در شرایط خاک‌های آهکی در نظر گرفته شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of priming application of zinc aminochelate and ZnSO4 fertilizer on the chemical forms of zinc in the soil solution phase and its correlation with zinc concentration in sunflower

نویسندگان [English]

  • Mina Alipour Babadi 1
  • Mojtaba Norouzi Masir 2
  • Abdolamir Moezzi 3
  • Afrasyab Rahnama Ghahfarokhi 4
  • Mehdi Taghavi Zahedkolaei 5
1 PhD Student, Department of Soil Science, Faculty of agriculture, Shahid Chamran University of Ahvaz
2 Associate Prof., Dept. of Soil Science and Engineering, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Professor, Department of Soil Science, Faculty of agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
4 Professor, Department of Production Engineering and Plant Genetics, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
5 Assistant Professor., Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Disordered plant zinc (Zn) uptake is a common nutritional stress in calcareous soils. Adopting modern fertilization techniques is essential to increase plant Zn uptake, fortification and supply more Zn in the human food chain. This experiment was conducted to evaluate the effectiveness of seed priming with zinc aminochelates on the zinc concentration in sunflower seeds and to determine the different chemical forms of zinc in the soil solution. The study was arranged in a randomized complete block design (RCBD) with three replications during the cultivation period from winter 2021 to spring 2022 at the research farm of Shahid Chamran University of Ahvaz. The experimental treatments consisted of seed priming with solutions containing a 2% zinc concentration from zinc glycine [Zn(Gly)₂] and zinc methionine [Zn(Met)₂] aminochelates (2%), ZnSO₄ (2%) fertilizer, and a control treatment (without priming). Visual MINTEQ geochemical software was utilized to determine the dominant Zn species in the soil solution phase. The results revealed that seed priming with Zn aminochlates, especially [Zn(Met)₂], significantly reduced soil pH and significantly increased DOC (41.8%), soil soluble Zn (46.9%), soil available Zn (30.3%), and Zn concentrations in both leaves (65.7%) and seeds (8.18%) compared to the ZnSO₄ treatment. Seed priming with Zn aminochelates and ZnSO4 fertilizer significantly affected the distribution percentage of Zn chemical species in the soil solution. The highest increase in concentration of free Zn (Zn2+), Zn bound to dissolved organic matter (Zn-DOM), and ZnSO4 species as the dominant Zn species in the soil solution phase was obtained by the priming treatment with [Zn (Met)2] aminochelate. The results also indicated a strong positive correlation between the concentrations of Zn2+ and Zn-DOM species, as Zn -available species, and Zn concentrations in leaves and seeds. Based on the results of the present study, seed priming with Zn aminochelates, particularly [Zn(Met)₂], can be considered an effective strategy for enhancing plant nutrition, seed biofortification, and ultimately improving the nutritional quality of sunflower crops in calcareous soils.

کلیدواژه‌ها [English]

  • Aminochelate
  • Priming
  • Available Zn
  • Speciation
  • Sunflower

EXTENDED ABSTRACT

 

Background

Zinc (Zn) is a critical micronutrient for plant growth and development. Despite its importance, Zn availability in calcareous soils is frequently restricted due to high pH levels and elevated carbonate content, which reduce Zn solubility and hinder plant uptake. Addressing this challenge requires innovative solutions, such as utilizing Zn aminochelates. These chelated forms of Zn exhibit high bioavailability, enhancing nutrient absorption and improving plant resilience under adverse soil conditions. Seed priming with Zn aminochelates represents an effective strategy to increase Zn uptake, boost crop yield, and improve the nutritional quality of plants. The speciation of Zn in soil plays a pivotal role in its interaction with soil components, affecting its availability and uptake by plants. Consequently, understanding the chemical forms of Zn under various conditions is vital. Visual MINTEQ, a geochemical modeling software, offers a robust method for simulating intricate interactions and predicting the dominant Zn species in the soil solution phase. Such simulations are instrumental in optimizing Zn fertilizer management under resource-constrained conditions.

Objective(s)

This study evaluated the efficacy of seed priming with Zn aminochelates in influencing the distribution of Zn chemical species within the soil solution and examined their correlation with Zn concentrations in various plant organs.

Materials and Methods

This study employed a randomized complete block design (RCBD) with three replications during the 2021-2022 growing season (winter to spring) at the Research Field of Shahid Chamran University of Ahvaz, using sunflower (Helianthus annuus L. cv. Oscar) as the test crop. The experimental treatments consisted of seed priming with zinc glycine [Zn(Gly)₂] and zinc methionine [Zn(Met)₂] aminochelates (2%), ZnSO₄ (2%) fertilizer, and a control treatment (without priming). Following the cultivation period, key soil chemical properties were analyzed, including pH, dissolved organic carbon (DOC), cations and anions, and soil-soluble, Zn soil-available Zn, and Zn concentrations in plant leaves and seeds. The dominant Zn species in the soil solution phase were predicted using Visual MINTEQ, a geochemical modeling software.

Results and Discussion

The findings demonstrated that Zn aminochelates significantly reduced soil pH. The application of [Zn(Gly)₂] and [Zn(Met)₂] aminochelates markedly increased DOC, soil-soluble Zn, soil-available Zn, and Zn concentrations in both leaves and seeds compared to the control treatment. Among the treatments, Zn aminochelates outperformed ZnSO₄ fertilizer in enhancing Zn solubility and availability in the soil. Seed priming with Zn aminochelates and ZnSO₄ fertilizer significantly influenced the distribution of Zn chemical species in the soil solution. The concentrations of free Zn ions (Zn²⁺), Zn bound to dissolved organic matter (Zn-DOM), and ZnSO₄ species, identified as the dominant Zn species in the soil solution phase, increased significantly compared to the control. Notably, the priming treatment with [Zn(Met)₂] aminochelate resulted in the highest concentration of Zn-DOM. A strong, positive correlation was observed between seed Zn concentration and the concentrations of Zn²⁺ (r = 0.737**) and Zn-DOM (r = 0.788**), recognized as Zn's bioavailable forms.

Conclusions

Priming with Zn aminochelates effectively mitigates Zn deficiency by improving nutrient acquisition during critical stages of plant growth. This method addresses Zn deficiency and enhances sustainable agricultural practices by increasing nutrient use efficiency and crop yield in difficult soil conditions. Visual MINTEQ for Zn speciation offers a deeper understanding of Zn chemical dynamics, enabling better decision-making for sustainable resource utilization.

Author Contributions

Mina Alipour Babadi and Mojtaba Norouzi Masir conceived of the presented idea, developed the theory and performed the computations. Mehdi Taghavi Zahedkolaei verified analytical methods and performed the computations. Mina Alipour Babadi carried out the experiment. Mojtaba Norouzi Masir investigated software analysis and data validation and also supervised the findings of this work. Abdolamir Moezi and Afrasyab Rahnama Ghahfarokhi provided resources and investigated the laboratory soil and plant tissues analysis. Mina Alipour Babadi worte the final version of manuscript. All authors have read and agreed to the published version of the manuscript. All authors contributed according their name place to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data is available on request from the authors.

Acknowledgements

The authors would like to thank the Research council of Shahid Chamran University of Ahvaz, Ahvaz, Iran for the financial support of this research (grant number: SCU.AS1401.26962).

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdelkader, M., Voronina, L., Puchkov, M., Shcherbakova, N., Pakina, E., Zargar, M., & Lyashko, M. (2023). Seed Priming with Exogenous Amino Acids Improves Germination Rates and Enhances Photosynthetic Pigments of Onion Seedlings (Allium cepa L.). Horticulturae, 9(1), 80. https://doi.org/10.3390/horticulturae9010080
Abdollahi, A., Masir, M.N., Taghavi, M., & Moezzi, A. (2020). Effect of Zinc Oxide Nanoparticles on Zinc Chemical Forms Species in Soil Solution Phase and its Correlation with Concentration and Uptake of Zinc in Wheat. Applied Soil Research, 7(4), 35-46. (In Persian)
Abdollahi, A., Norouzi Masir, M., Taghavi Zahedkolaei, M. & Moezzi, A. A. (2020). Effect of functionalized iron oxide nanoparticles and zinc sulfate chemical fertilizer on zinc speciation in soil and uptake of zinc in wheat. Journal of Water and Soil Science, 24(2), 87-103. (In Persian)
Akça, H., Danish, S., Younis, U., Babar, S. K., & Taban, S. (2022). Soil and foliar application of zinc-methionine and zinc sulfate effects on growth and micronutrients enrichment in maize cultivated in lime-rich and poor soils. Journal of Plant Nutrition, 45(14), 2158–2169. https://doi.org/10.1080/01904167.2022.2046077
Asadi, E., Ghehsareh, A.M., Moghadam, E.G., Hoodaji, M., & Zabihi, H.R. (2019). Improvement of pomegranate colorless arils using iron and zinc fertilization. Journal of Cleaner Production, 234, 392–399. https://doi.org/10.1016/j.jclepro.2019.06.129
Ashmead, S. D., Wheelwright, D. C., Ericson, C., & Pedersen, M. (2000). A composition and method for preparing amino acid chelates free of interfering ions (U.S. Patent No. WO2002030948A3). Google Patents. https://patents.google.com/patent/WO2002030948A3  
Assunção, A. G. L., Cakmak, I., Clemens, S., González-Guerrero, M., Nawrocki, A., & Thomine, S. (2022). Micronutrient homeostasis in plants for more sustainable agriculture and healthier human nutrition. Journal of experimental botany, 73(6), 1789–1799. https://doi.org/10.1093/jxb/erac014
Bashir, S., Basit, A., Abbas, R. N., Naeem, S., Bashir, S., Ahmed, N., Ahmed, M. S., Ilyas, M. Z., Aslam, Z., Alotaibi, S. S., El-Shehawi, A. M., & Li, Y. (2021). Combined application of zinc-lysine chelate and zinc-solubilizing bacteria improves yield and grain biofortification of maize (Zea mays L.). PloS one16(7), e0254647. https://doi.org/10.1371/journal.pone.0254647 
Brailsford, F. L., Glanville, H. C., Golyshin, P. N., Johnes, P. J., Yates, C. A., & Jones, D. L. (2019). Microbial uptake kinetics of dissolved organic carbon (DOC) compound groups from river water and sediments. Scientific reports9(1), 11229. https://doi.org/10.1038/s41598-019-47749-6
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-Total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (pp. 595–624). American Society of Agronomy. 
Campbell, C. R., & Plank, C. O. (1998). Preparation of plant tissue for laboratory analysis. In Y. P. Kalra (Ed.), Handbook of reference methods for plant analysis (pp. 37–50). CRC Press. 
Elfaki, J.T., Gafer, M.O., Sulieman, M.M., & Ali, M.E. (2016). Assessment of Calcimetric and Titrimetric Methods for Calcium Carbonate Estimation of Five Soil Types in Central Sudan. Journal of Geoscience and Environment Protection, 04, 120-127.
Gajalakshmi, R., Chitdeshwari, T., Maragatham, S., & Ravikesavan, R. (2022). Seed priming with different levels and sources of zinc on the seed germination and seedling growth of barnyard millet (Echinocola frumentacea). Journal of Applied and Natural Science, 14(3), 876–884. https://doi.org/10.31018/jans.v14i3.3548
Galindo, F.S., Bellotte, J.L., Santini, J.M., Buzetti, S., Rosa, P.A., Jalal, A., & Teixeira Filho, M.C. (2021). Zinc use efficiency of maize-wheat cropping after inoculation with Azospirillum brasilense. Nutrient Cycling in Agroecosystems, 120, 205 - 221. https://doi.org/10.1007/s10705-021-10149-2
Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. New Phytologist, 174(3), 499–506. https://doi.org/10.1111/j.1469-8137.2007.02051.x
Jacob, R. H., Afify, A. S., Shanab, S. M., & Shalaby, E. A. (2022). Chelated amino acids: biomass sources, preparation, properties, and biological activities. Biomass Conversion and Biorefinery, 14(3), 2907–2921. https://doi.org/10.1007/s13399-022-02333-3
Jacquat, O., Voegelin, A., & Kretzschmar, R. (2009). Soil Properties Controlling Zn Speciation and Fractionation in Contaminated Soils. Geochimica et Cosmochimica Acta, 73, 5256-5272.
Jebril, N., Boden, R., & Braungardt, C. (2021). The effect of pH, calcium, phosphate and humic acid on cadmium availability and speciation in artificial groundwater. In Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022020). IOP Publishing. https://doi.org/10.1088/1742- 6596/1879/2/022020
Kaur, S. & Kalra, A.K. (2022). Amino Chelate Fertilizers as the Latest Novelties in Plant Nutrition: A Review. International Journal of Trend in Scientific Research and Development, 6 (2), 1389-1392. URL:www.ijtsrd.com/papers/ijtsrd49432.pdf
Khoshgoftarmanesh, A.H., Shariatmadari, H., Karimian, N., Kalbasi, M., & Zee, S.V. (2006). Cadmium and zinc in saline soil solutions and their concentrations in wheat. Soil Science Society of America Journal, 70, 582-589.
Lindsay, W.L., & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421-428.
Mahmoud Soltani, S., Ebadi, A. A., Tajadoditalab Rashti, K., Sartipi, S., & Shakouri Katigari, M. (2024a). Foliar spray of glycine-chelated zinc (Zn) and iron (Fe) lowered the effect of macronutrient deficiencies and enhanced rice yield components, yield, and grain biofortification. Journal of Plant Nutrition, 1–17.  https://doi:10.1080/01904167.2024.2378923.
Mahmoud Soltani, Sh., Hoseini Chaleshtori, M., Nazari, Sh., & Shakouri Katigari, M. (2024b). Co-application of Seed Priming and Foliar Spraying by Zinc, a Solution to Enhance Rice Yield and Grain Bio-fortification, Iranian Journal of Soil and Water Research, 55 (9), 1451-1470. https://doi.org/10.22059/ijswr.2024.377502.669727. (In Persian)
Marukhlenko, A. V., Morozova, M. A., Mbarga, A. M. J., Antipova, N. V., Syroeshkin, A. V., Podoprigora, I. V., & Maksimova, T. V. (2022). Chelation of Zinc with Biogenic Amino Acids: Description of Properties Using Balaban Index, Assessment of Biological Activity on Spirostomum Ambiguum Cellular Biosensor, Influence on Biofilms and Direct Antibacterial Action. Pharmaceuticals, 15(8), 979. https://doi.org/10.3390/ph15080979
McBride, M.B. (1994). Environmental Chemistry of Soils. Oxford University Press, Inc., New York.
Mirbolook, A., Rasouli-Sadaghiani, M.H., Sepehr, E., Lakzian, A. & Hakimi, M. (2021). Synthesized Zn(II)-Amino Acid and-Chitosan chelates to increase Zn uptake by Bean (Phaseolus vulgaris) Plants. Journal of Plant Growth Regulation, 40, 831–847. https://doi.org/10.1007/s00344-020-10151-y  
Mousavi, S. M., Sedaghat, A., & Esmaeili, M. (2024). Zinc in Plants: Biochemical Functions and Dependent Signaling. Signaling and Communication in Plants, 241–263. https://doi.org/10.1007/978-3-031-59024-5_12
Mousavi, S.M., Motesharezadeh, B., Mirseyed Hosseini, H., Alikhani, H., & Zolfaghari, A.A. (2018). Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. http://dx.doi.org/10.1016/j.ecoenv.2017.08.045
Niu, J., Liu, C., Huang, M., Liu, K., & Yan, D. (2020). Effects of Foliar Fertilization: A Review of Current Status and Future Perspectives. Journal of Soil Science and Plant Nutrition, 21, 104 - 118.
Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page (Ed.), Methods of soil analysis: Part 2—Chemical and microbiological properties (pp. 403–430). American Society of Agronomy. 
Pearson, H. B. C., Comber, S. D. W., Braungardt, C. B., Worsfold, P., Stockdale, A., & Lofts, S. (2018). Determination and Prediction of Zinc Speciation in Estuaries. Environmental Science & Technology52, 14245–14255. https://doi.org/10.1021/acs.est.8b04372
Rasouli-Sadaghiani, M., Sadeghzadeh, B., Sepehr, E., & Rengel, Z. (2011). Root exudation and zinc uptake by barley genotypes differing in zn efficiency. Journal of Plant Nutrition, 34(8), 1120–1132. https://doi.org/10.1080/01904167.2011.558156
Rhoades, J. D. (1996). Salinity: Electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis: Part 3. Chemical methods (pp. 417–435). Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c14    
Sadeghzadeh, B. (2013). A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition, 13 (4), 905–927. https://doi:10.4067/S0718-95162013005000072   
Saleem, M. H., Usman, K., Rizwan, M., Jabri, H. A., & Alsafran, M. (2022). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1033092
Seddigh, M., Khoshgoftarmanesh, A. H., & Ghasemi, S. (2015). The effectiveness of seed priming with synthetic zinc-amino acid chelates in comparison with soil-applied ZnSO4in improving yield and zinc availability of wheat grain. Journal of Plant Nutrition, 39(3), 417–427. https://doi.org/10.1080/01904167.2015.1069340
Smith, D. S., Bell, R. A., & Kramer, J. R. (2002). Metal speciation in natural waters with emphasis on reduced sulfur groups as strong metal binding sites. Comparative biochemistry and physiology. Toxicology & pharmacology: CBP133(1-2), 65–74. https://doi.org/10.1016/s1532-0456(02)00108-4
Souri, M. K., & Aslani M. (2018). Beneficial effects of foliar application of organic chelate fertilizers on French bean production under field conditions in a calcareous soil. Advances in Horticultural Science, 32(2): 265-272. https://doi:10.13128/ahs-21988
Souri, M. K., & Hatamian, M. (2018). Aminochelates in plant nutrition: a review. Journal of Plant Nutrition42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671
Stephan, C. H., Courchesne, F., Hendershot, W. H., McGrath, S. P., Chaudri, A. M., Sappin-Didier, V., & Sauvé, S. (2008). Speciation of zinc in contaminated soils. Environmental pollution (Barking, Essex: 1987)155(2), 208–216. https://doi.org/10.1016/j.envpol.2007.12.006
Tabesh, M., Kiani, S., & Khoshgoftarmanesh, A. H. (2020). The effectiveness of seed priming and foliar application of zinc- amino acid chelates in comparison with zinc sulfate on yield and grain nutritional quality of common bean. Journal of Plant Nutrition43(14), 2106–2116. https://doi.org/10.1080/01904167.2020.1771579
Tahervand, S. & Jalali, M. (2016). Sorption, desorption, and speciation of Cd, Ni, and Fe by four calcareous soils as affected by pH. Environmental Monitoring and Assessment 188(6), 322.
Trevors, J.T., & Alloway, B.J. (2013). Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Heavy Metals in Soils.
Veena, M., & Puthur, J. T. (2022). Seed nutripriming with zinc is an apt tool to alleviate malnutrition. Environmental geochemistry and health, 44(8), 2355–2373. https://doi.org/10.1007/s10653-021-01054-2
Vodyanitskii, Y. N. (2010). Zinc forms in soils (Review of publications). Eurasian Soil Science, 43(3), 269–277. https://doi.org/10.1134/s106422931003004x
Walkley, A. (1947). A Critical Examination of a Rapid Method for Determining Organic Carbon in Soils: Effect of Variations in Digestion Conditions and of Inorganic Soil Constituents. Soil Science, 63, 251-264. http://dx.doi.org/10.1097/00010694-194704000-00001
Wolf, B. (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis, 13(12), 1035–1059. https://doi:10.1080/00103628209367332.
Yoon, U., Kim, J., Kim, S. H., & Jeong, K. (2024). Optimal density-functional theory method for zinc–amino acid complexes determined by analyzing structural and Fourier-transform infrared spectroscopy data. RSC Advances, 14(2), 1051–1055. https://doi.org/10.1039/d3ra07172c
Yu, Z., Zhang, Q., Kraus, T. E. C., Dahlgren, R. A., Anastasio, C., & Zasoski, R. J. (2002). Contribution of Amino Compounds to Dissolved Organic Nitrogen in Forest Soils. Biogeochemistry, 61(2), 173–198. http://www.jstor.org/stable/1469810
Zaheer, I. E., Ali, S., Saleem, M. H., Arslan Ashraf, M., Ali, Q., Abbas, Z., Rizwan, M., El-Sheikh, M. A., Alyemeni, M. N., & Wijaya, L. (2020). Zinc-lysine Supplementation Mitigates Oxidative Stress in Rapeseed (Brassica napus L.) by Preventing Phytotoxicity of Chromium, When Irrigated with Tannery Wastewater. Plants (Basel, Switzerland)9(9), 1145. https://doi.org/10.3390/plants9091145
Zhang, R., Liu, Q., Xu, X., Liao, M., Lin, L., Hu, R., Luo, X., Wang, Z., Wang, J., Deng, Q., Liang, D., Xia, H., Lv, X., Tang, Y., & Wang, X. (2022). An amino acid fertilizer improves the emergent accumulator plant Nasturtium officinale R. Br. phytoremediation capability for cadmium-contaminated paddy soils. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1003743
Zhao, A., Yang, S., Wang, B., & Tian, X. (2019). Effects of ZnSO4 and Zn-EDTA applied by broadcasting or by banding on soil Zn fractions and Zn uptake by wheat (Triticum aestivum L.) under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 182, 307–317.