تکامل خاک متأثر از تغییر فاکتورهای خاک‌سازی با استفاده از تکنیک پذیرفتاری مغناطیسی در برش طولی بردسیر- خانه‌سرخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

پذیرفتاری مغناطیسی در ارزیابی تأثیر عوامل خاکسازی بر تکامل خاک مفید می‌باشد. مطالعه حاضر با هدف مقایسه شاخص‌های مختلف تکامل خاک در رابطه با مواد مادری (رسوبی و آذرین) و رژیم‌های رطوبتی (اریدیک و زریک) مختلف در برش طولی بردسیر- خانه‌سرخ کرمان انجام شد. برای دستیابی به این هدف، تعداد شش خاکرخ متأثر از مواد مادری و رژیم‌های رطوبتی مختلف انتخاب شد. میزان تکامل خاکرخ‌های مورد مطالعه با استفاده از میزان پذیرفتاری مغناطیسی، آهن متبلور (Fed) عصاره‌گیری شده توسط سیترات-بی‌کربنات-دی‌تیونات، آهن غیر متبلور (Feo) با عصاره‌گیری اسید آمونیوم اگزالات و نیز خصوصیات مورفولوژی خاک و افق-های مشخصه، مقایسه شد. در سیستم رده‌بندی آمریکایی (2022) خاکرخ‌ها در رده اریدیسول، اینسپتی‌سول و آلفی‌سول قرار گرفتند. نتایج نشان داد که بیشترین میانگین پذیرفتاری مغناطیسی در خاکرخ 5 با مواد مادری آذرین و کم‌ترین آن در خاکرخ 4  با مواد مادری آهکی مشاهده شد. خاکرخ 2 با رژیم رطوبتی اریدیک نسبت به خاکرخ 5 دارای رژیم رطوبتی زریک، پذیرفتاری مغناطیسی کمتری داشت، در‌حالی که مواد مادری هر دو یکسان بود. خاکرخ‌هایی که در رژیم رطوبتی زریک بودند مقادیر پذیرفتاری بیشتری را نشان دادند. همبستگی مثبت و معنی‌دار (561/0R=  در سطح یک درصد) بین شاخص تکامل خاک (Fed-Feo) و مقادیر χlf و همبستگی منفی و معنی‌داری بین آهن غیر بلوری (R=0.492 در سطح یک درصد) و پذیرفتاری مغناطیسی (Fed /Feo) مشاهده شد. به‌طور کلی نتایج نشان داد که توزیع پذیرفتاری مغناطیسی در خاکرخ تحت تأثیرتوزیع اشکال مختلف آهن، تکامل خاک، مواد مادری، اقلیم و سرعت هوادیدگی در لایه‌های مختلف خاک بوده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Soil Evolution as affected by variation of soil forming factors using magnetic susceptibility technique along Bardsir-Khaneh Sorkh transect

نویسندگان [English]

  • Faeze Sadat Hosseini 1
  • Mohammad Hady Farpoor 2
1 MSc Student, Deptartmenr of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
چکیده [English]

 
Magnetic susceptibility is useful to evaluate the effect of soil forming factors on soil evolution. The present research was carried out to compare different soil development indices related to parent material (sedimentary and igneous) and soil moisture regimes (aridic and xeric) along Bardsir-Khaneh Sorkh transect in Kerman. That is why 6 pedons affected by different parent material and soil moisture regimes were selected. The evolution of studied pedons was compared using magnetic susceptibility values, crystalline iron (Fed) extracted by citrate- bicarbonate- dithionate, non-crystalline iron (Feo) extracted by acid ammonium oxalate, morphological soil properties, and diagnostic horizons. Aridisols, Inceptisols, and Alfisols were found using Soil Taxonomy (2022). Results of the study showed the maximum magnetic susceptibility in pedon 5 with igneous parent material and the minimum content in pedon 4 with calcareous parent material. Pedon 2 with an aridic soil moisture regime showed a lower magnetic susceptibility compared to pedon 5 with a xeric moisture regime, whereas the parent material for both pedons was the same. Pedons located on the xeric moisture regime had higher magnetic susceptibility values compared to the aridic regime. A positive significant correlation (R=0.561, 99% probability level) between soil evolution index (Fed-Feo) and χlf values and a negative significant correlation (R=0.4492, 99% probability level) between non-crystalline iron (Feo/Fed) and magnetic susceptibility were found. Results of the study showed that magnetic susceptibility distribution in the soil profile was affected by the distribution of different iron forms, soil evolution, parent material, climate, and weathering rate in different soil layers.

کلیدواژه‌ها [English]

  • Different iron forms
  • Parent material
  • Climate
  • Kerman
  • Central Iran

EXTENDED ABSTRACT

Introduction

 Magnetic susceptibility is a valuable tool for evaluating the effect of soil forming factors and processes on soil development. The present research was carried out to compare different soil development indices (iron forms and ratios, magnetic susceptibility, and diagnostic horizons formed) related to parent material (sedimentary and igneous) and soil moisture regimes (aridic and xeric) as two important soil forming factors along Bardsir-Khaneh Sorkh transect in Kerman area, central Iran.

Materials and Methods

 The study area was a transect from Bardsir to Khaneh-Sorkh in Kerman Province, central Iran. Six pedons on different geomorphic positions, including rock pediment (pedons 5 and 6), alluvial fan (pedon 3), and mantled pediment (pedons 1, 2, and 4) were selected. Routine physicochemical analyses were performed on all samples. Besides, samples were used for magnetic susceptibility investigations. Parent rocks were also analyzed for magnetic susceptibility determinations. Pedons 1, 3, and 4 were affected by sedimentary parent material whereas pedons 2, 5, and 6 were located on igneous parent rocks. Moreover, to study the effect of climate on magnetic susceptibility, pedons 1 and 2 were selected in aridic and pedons 3-6 on xeric soil moisture regimes. The evolution of studied pedons was compared using magnetic susceptibility values, different iron forms and contents, morphological soil properties, and diagnostic horizons that have been formed.

Results and Discussion

 Argigypsids (pedon 1) and Calciargids (pedon 2) in the aridic soil moisture regime of the area were found which could be proof of the presence of a paleoclimate with more available moisture content compared to the present time. This was also reported by other researchers in central parts of Iran. On the other hand, Haploxeralfs (pedons 5 and 6 with igneous parent material), Calcixerepts (pedon 3 with sedimentary parent material), and Haploxerepts (pedon 4 with sedimentary parent material) were formed on the xeric parts of the transect which clearly show the effect of climate and parent material on soil evolution.  The maximum χlf found in soils (pedon 5) with igneous parent material (Table 2). Soils on sedimentary parent material showed somehow high magnetic susceptibility values which were related to the soil evolution (removal of diamagnetic material such as gypsum and calcium carbonate from topsoil) and the role of adjacent igneous formations. Pedons 2 (aridic moisture regime) and 5 (xeric moisture regime) with similar parent material (igneous), but different climatic conditions show different magnetic susceptibility values which is a support for the effect of climate on magnetic susceptibility values. This was also reported by other researchers. Table 3 shows the magnetic susceptibility values on parent rocks. Igneous rocks have higher magnetic susceptibility values compared to sedimentary rocks. The lowest CBD iron content was determined in pedon 3 which is an Inceptisol with moderate development on sedimentary parent material in xeric part of the transect. Pedon 5 with the highest magnetic susceptibility value showed the highest Fed-Feo content (Table 4). Positive significant correlations between Fed, Fed-Feo, and magnetic susceptibility were found as was also supported by other researchers. Results of the study showed that the variation of magnetic susceptibility in soils under study was depended on different iron forms, soil development, rate of weathering, climate, and petrography.

Conclusion

The high χlf values were found in soils located on igneous parent material compared to sedimentary ones. Increasing weathering and soil development with time caused χlf values to be increased in both igneous and sedimentary affected soils. No positive correlation was found between magnetic susceptibility values and soil properties. This shows that magnetic susceptibility in the area under study was not probably affected by secondary magnetic particles. The results of the study proved the effect of climate and parent material on soil formation and evolution using the magnetic susceptibility technique. Moreover, magnetic susceptibility was affected by parent material, climate, topography, soil formation and evolution, and iron forms and ratios. This clearly shows the complexity of soil formation. That is why the determination of the direct effect of individual environmental factors on soil magnetic susceptibility value is not possible to be studied by single research.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data is available on reasonable request from the authors.

Ethical considerations

     The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abdoli Y., Jafari S., & Beshkar A. (2019). Correlation between different Fe foems and magnetic susceptibility with the development of some Ramhormoz’s soils, Khuzestan Province, Iran. Journal of Water and Soil, 32(6): 1149-1164., https://doi.org/10.22067/jsw.v32i6.68206, (In Persian).
Asgari N., Ayoubi S., & Demattê, J. A. )2018(. Soil drainage assessment by magnetic susceptibility measures in western Iran. Geoderma regional, 13: 35-42.
Ayoub S., Amiri S., & Tajik S. )2014(. Lithogenic and anthropogenic impacts on soil surface magnetic susceptibility in an aird region of Central Iran. Archives of Agronomy and soil Science, 60 (10): 1467-1483.
Azadi A., Baghernejad M., Gholami A., & Shakeri S. )2021(. Forms and distribution pattern of soil Fe (Iron) and Mn (Manganese) oxides due to long-term rice cultivation in Fars Province, Southern Iran. Communications in Soil Science and Plant Analysis, 52(16): 1894-1911.
Banaiee M.H. )1998(. Soil Moisture and temperature regime map of soils of Iran. Soil and Water Research Institute, Tehran, Iran.
Bayat A., Farpoor M.H., & Jafari A. (2016). Physicochemical properties, micromorphology and clay mineralogy of soils affected by geological formations, geomorphology and climate. Journal of Water and Soil, 30(5): 1515-1530., https://doi.org/10.22067/jsw.v0i0.33013, (In Persian).
Bower C. A., & Hatcher J. T. )1966(. Simultaneous determination of surface area and cation‐exchange capacity. Soil Science Society of America Journal, 30(4): 525-527.
Cai W., Bora M. J., Pekkat S, Bordoloi S., Garg A., & Sekharan S. (2023). A new and simple model for predicting soil erosion based on hole erosion tests. Acta Geophysics, 71(2):823–836. https://doi.org/10.1007/s11600-022-00904-6.
Cao Z., Zhang K., He J., Yang Z., & Zhou Z. (2021). Linking rocky desertification to soil erosion by investigating changes in soil magnetic susceptibility profiles on karst slopes. Geoderma 389:114949. https://doi.org/10.1016/j.geoderma.2021.114949
Chaparro M.A.E., Moralejo M.D.P., Böhnel H.N., & Acebal S.G. (2020). Iron oxide mineralogy in Mollisols, Aridisols and Entisols from southwestern Pampean region (Argentina) by environmental magnetism approach. Catena, 190, Article No. 104534, https://doi.org/10.1016 /j. catena.2020.104534
Dankoub Z., Ayoubi S., Khademi H., & Lu S. G. (2012). Spatial distribution of magnetic properties and selected heavy metals in calcareous soils as affected by land use in the Isfahan region, Central Iran. Pedosphere, 22: 33-47.
Dearing J.A. (1999). Environmental magnetic susceptibility using the Bartington MS2 System. 2nd ed. Kenilworth: Chi Publishing.
Ding Z., Zhang Z., Li Y., Zhang L., & Zhang K. (2020). Characteristics of magnetic susceptibility on cropland and pastureland slopes in an area influenced by both wind and water erosion and implications for soil redistribution patterns. Soil Tillage Research, 199:104568.
Djerrab A., Zedam R., Camps P., Defaflia N., Abdessadok S., Triki D., & Bahra N. (2012). Etude sédimentologique et magnetique d’une séquence alluviale du pléistocène supérieur-holocène del’Oued Adaila (El Ma Labiod, Tébessa, Algérie) et indications.
Egli M., Mirabella A., Sartori G., & Fitze P. (2003). Weathering rates as a function of climate: results from a climosequence of the val Genova (Trention Italian Alps). Geoderma, 111: 99-121.
Fine P., Singer M.J., Laven R., Verosub K., & Southard R.J. (1989). Role of pedogenesis in distribution of magnetic susceptibility in two California chronosequences. Geoderma, 44: 287- 306.
Gee G.W., & Bauder J.W. (1986). Particle size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis. Agron. Monger. vol. 9. ASA and SSSA, Madison, WI, pp. 388–409.
Hosseini S.S., Esfandiarpour Boroujeni I., Farpoor M.H., & Karimi. A.R. (2015). Comparison of different soil development indices along Kerman-Baft transect. Journal of Soil Management and Sustainable Production, 5(2): 1-23. (In Persian).
IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria.
Jelenska M., Hasso-Agopsowicz A, Kadzialko-Hofmokl M. K., Sukhorada A., Bondar K., & Matviishina Z. H. (2008). Magnetic iron oχides occurring in chernozem soil from Ukraine and Poland as indcators of pedogenic processes. Studia Geophysica et Geodaetica, 52: 255-270.
Kader S., Novicevic R., & Jaufer L. (2022). Soil management in sustainable agriculture: analytical approach for the ammonia removal from the diary manure. The Journal of Agricultural Forestry 68(4):69–78.
Karimi A., & Khademi H. (2012). Effect of parent material, gypsum and carbonates on magnetic susceptibility of soils, southern Mashad. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 16(61): 247-258. (In Persian).
Kehl M., Vlaminck S., Köhler T., Laag C., Rolf C, Tsukamoto S, & Khormali F. (2021). Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands-New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quaternary Science Review, 253:106774.
Khan Nazer N. H. (1995). Geological Quadrangle Map. Chahargonbad. Geology Organization of Iran.
Le Borgne E. (1955). Susceptibilite magnetique anomale du sol superficial. Annales de Geophysique, 11:399-419.
Li G., Χia D., Lu H., Wang Y., Jia J., Liu Χ., & Yang Χ. (2020). Magnetic, granulometric and geochemical characterizations of loess sections in the eastern Arid Central Asia: Implication for paleoenviron-mental interpretations. Quaternary International, 552:135–147.
Liliwirianis N., Isa N.N.M., & Suratman M.N. (2023). Land Resources and Its Degradation in Asia: Its Control and Management. Land Environment Management through Forestry, https://doi.org/10.1002/9781119910527.ch2
Lu S.G. (2000). Lithological factors affecting magnetic susceptibility of subtropical soils, Zhejiang Province, China. Catena, 40:359–373.
Lu S.G., Chen D.J., Wang S.Y., & Liu Y.D. (2012). Rock magnetism investigation of highly magnetic soil developed on calcareous rock in Yun-Gui Plateau, China: Evidence for pedogenic magnetic minerals. Journal of Applied Geophysics, 77: 39-50.
Mehra O.P., & Jackson M.L. (1958). Iron oxide removal from soils and clays by a clays and clays dithionite-citrate system buffered with sodium bicarbonate. National Conference on Minerals, 7: 317-327.
Moghbeli Z., Owliaie H.R., Adhami E., Najafi-Ghiri M., & Sanjari S. (2021). Pedogenesis and spatial distribution of soil magnetic properties along a lithotoposequence in an arid region of Southern Iran. Catena, 198, Article No. 104979, https://doi.org/10.1016/j.catena.2020.104979.
Mullins C.E. (1977). Magnetic susceptibility of the soil and its significance in soil science: a review. Journal of Soil Science, 28:223–246.
Nelson D. W., & Sommers L.E. (1982). Total Carbon, Organic matter. P. 539-577.In: A.L. page et al. (Ed), Method of Soil Analysis. Part 2. 2nd ed. Agron. Monger. No. 9. ASA and SSSA. Madison WI.
Owliaie H. (2014). A magnetic investigation along a NE–SW transect of the Yasouj Plain, southwestern Iran. Archives of Agronomy and Soil Science, 60(7):1015–1027. https://doi.org/10.1080/03650340.2013.855724
Rasooli N. Farpoor M.H., Mahmoodabadi M., & Esfandiarpour Boroujeni I. (2022). Pedoenvironmental variations assessment using magnetic susceptibility in Lut Watershed Central Iran. Journal of Applied Geophysics, 198, 104582.
Rezapour S., Jafarzadeh, A., Samadi A., & Oustan S. (2010). Distribution of iron oxides forms on a transect of calcareous soils, north- west of Iran. Archives of Agronomy and Soil Science, 56: 165-182.
Rustad L. E., CampbeII J.L., Marion G.M., Norby R.J., Mitchell M.J., Hartley A.E., Cornelissen J.H.C., & Gurevitch J. (2001). A meta-analysis of the response of soil respiration net nitrogen miner-alization and aboveground plant growth to eχperimental ecosystem warming. GCTE-NEWS. Oecologin, 126:543-562.
Sanjari S., Farpoor M.H., Karimian Eghbal M., & Esfandiarpour Boroujeni, I. (2011). Genesis, micromorphology and clay mineralogy of soils located on different geomorphic surfaces in Jiroft Area. Journal of Water and Soil 25(2): 411-425., https://doi.org/10.22067/jsw.v0i0.9487 (In Persian). 
Sanjari S., Farpoor M.H., & Mahmoodabadi M. (2021). Magnetic susceptibility of soils as affected by lithology, geomorphology and climate in Jazmoorian Watershed, central Iran. Geosciences Journal, 25: 903-913, https://doi.org/10.1007/s12303-021-0007-5.
Soleimani Sardoo E., Farpoor M.H., Mahmoodabadi M., & Jafari A. (2023). Magnetic susceptibility in soil pedons developed on different parent rocks in Kerman province (Iran). Studia Geophysica et Geodaetica, 67(1):83–106.https://doi.org/10.1007/s11200-021-0771-8.
Sarmast M., Farpoor M.H., & Esfandiarpour Boroujeni I. (2016). Comparing Soil Taxonomy (2014) and updated WRB (2015) for describing calcareous and gypsiferous soils, central Iran. Catena, 145: 83-91.
Sarmast M., Farpoor M. H., & Esfandiarpour Boroujeni I. (2017). Magnetic susceptibility of soils along a lithotoposequence in southeast Iran. Catena, 156: 252-262.
Schoeneberger P.J., Wysocki D.A., & Benham E.C. (2012). Field Book for Describing and Sampling Soils. Natural Resources Conservation Service. National Soil Survey Center, Lincoln, NE.
Schwertmann U. (1973). Use of oxalate for Fe extraction from soils. Canadian Journal of Soil Science, 53(2): 244-246.
Shirzaditabar F., & Heck R. J. (2021). Characterization of soil magnetic sus-ceptibility: a review of fundamental concepts, instrumentation, and applications. Canadian Journal of Soil Science, 102(2): 231–251. https://doi.org/10.1139/cjss-2021-0040.
Soil Survey Staff. (2022). Keys to Soil Taxonomy. 13th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA
Taghdis S. Farpoor M. H., Fekri M., & Mahmoodabadi M. (2021). Vertical disthibution of magnetic susceptibility as affected by pedoenvironmental factors along arid and semi-arid transect Fars province Iran. Study Geophysica et Geodaetica, 65: 86-103. 10.1007/s11200-020-1259-7.
Tsai H., Huang W. S., Hseu Z. Y., & Chen Z. S. (2006). A river terrace soil chronosequence of the pakua tableland in central Taiwan. Soil Science, 171: 167-179.