تاثیر میکروپلاستیک پلی‌اتیلن سنگین و بیوچار کود گاوی بر کربن، نیتروژن و برخی از ویژگی‌های زیستی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

پژوهش حاضر با هدف بررسی تأثیر ذرات میکروپلاستیک پلی‌اتیلن سنگین و بیوچار کود گاوی بر کربن آلی، نیتروژن کل و برخی از ویژگی‌های زیستی موثر بر چرخه کربن و نیتروژن در خاک انجام شد. آزمایش در قالب طرح کاملاً تصادفی با تیمارهای شامل خاک شاهد، میکروپلاستیک پلی‌اتیلن سنگین (2 درصد)، بیوچار (2 درصد) و مخلوط میکروپلاستیک (2 درصد) و بیوچار (2 درصد) در سه تکرار انجام شد. خاک­های تیمار شده به مدت 60 روز در دمای آزمایشگاه و رطوبت 70 درصد ظرفیت زراعی نگهداری شدند. نتایج نشان داد که بیوچار و بیوچار همراه با میکروپلاستیک باعث افزایش کربن آلی و نیتروژن کل خاک شدند. میکروپلاستیک و بیوچار به تنهایی و کاربرد همزمان هر دو موجب کاهش معنی‌دار تنفس میکروبی خاک شدند. تیمارهای آزمایشی تاثیر معنی‌داری بر نیتروژن زیست توده میکروبی نداشتند (05/0 .(p>میکروپلاستیک تاثیر معنی­داری بر کربن زیست توده میکروبی خاک نداشت، ولی بیوچار و بیوچار به همراه میکروپلاستیک باعث افزایش 51/73 و 66/78 درصدی کربن زیست توده میکروبی نسبت به خاک شاهد شد. چنین روندی در مورد نسبت کربن به نیتروژن زیست توده میکروبی نیز مشاهده شد. میکروپلاستیک تاثیر معنی‌داری بر فعالیت آنزیم اوره‌آز، معدنی­شدن و نیتریفیکاسیون خالص نیتروژن نداشت، ولی کاربرد همزمان بیوچار و میکروپلاستیک باعث افزایش 08/68 درصدی اوره‌آز و کاهش غیرمعنی‌دار نیتریفیکاسیون و معدنی­شدن خالص نیتروژن نسبت به شاهد شد. درمجموع، نتایج نشان داد که اگرچه پلی‌اتیلن سنگین تاثیر چشمگیری بر اکثر ویژگی­های اندازه­گیری شده این پژوهش ندارد ولی بیوچار می­تواند با تغییر مقدار کربن و نیتروژن و ویژگی­های زیستی خاک بر چرخه کربن و نیتروژن خاک آلوده و غیرآلوده به میکروپلاستیک موثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of high-density polyethylene microplastic and cow manure biochar on carbon, nitrogen and some biological properties of soil

نویسندگان [English]

  • Mahshid Mahsefat 1
  • Safoora Nahidan 2
1 Department of Soil Sciences and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Soil Sciences and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

This study investigated the effect of high-density polyethylene microplastic and cow manure biochar on soil organic C, total N and some biological properties affecting carbon and nitrogen cycling. The experiment was conducted in a completely randomized design with treatments including control soil, high-density polyethylene microplastic (2%), biochar (2%) and a mixture of microplastic (2%) and biochar (2%) in three replicates. The soil samples were incubated for 60 days at laboratory temperature and 70% field capacity. The findings indicated that biochar and the combination of biochar and microplastic increased soil organic C and total N. The use of microplastic and biochar in soil either alone or in combination, caused a significant decrease in soil microbial respiration. Experimental treatments did not have a significant effect on microbial biomass nitrogen (p>0.05). Microplastic had no significant effect on microbial biomass carbon but biochar and biochar with microplastic additions caused a significant increase by 73.51 and 78.66%, respectively. A similar trend was observed in the ratio of microbial biomass carbon to microbial biomass nitrogen. Microplastic did not have a significant effect on urease activity, net nitrogen mineralization and nitrification, but biochar with microplastic application caused an 68.08% increase of urease activity and an insignificant decrease of net nitrogen mineralization and nitrification compared to the control.The results showed that although high-density polyethylene microplastic does not have a significant effect on most of the measured soil parameters, biochar can affect the carbon and nitrogen cycling in uncontaminated and microplastic-contaminated soil by altering C and N content as well as biological properties.

کلیدواژه‌ها [English]

  • Basal respiration
  • Microbial biomass
  • Nitrogen mineralization
  • Urease

EXTENDED ABSTRACT

Background and objectives

Today, a concern called "emerging pollutants" such as microplastics, has received the attention of international and scientific communities. In general, microplastics (plastic particles smaller than 5 mm) can enter the soil from various sources, including landfills, vehicle tire wear, plastics left in the environment, and irrigation with sludge, soil amendments, organic fertilizers and sewage sludge and plastic mulch and atmospheric sediments. Most microplastics in agricultural soils are polypropylene and polyethylene. Microplastics according to their size, type, shape and quantity in soil can have different effects on the soil physical, chemical and biological properties. Soil microorganisms play a vital role in the soil ecosystem through influencing the biochemical elements cycling such as carbon and nitrogen. Therefore, the changes created on the microbial community by microplastics can affect the biochemical elements cycling, finally affect soil health and function. Biochar, as a rich source of carbon produced in anairobic or low-oxygen conditions by pyrolysis of organic materials such as wood, agricultural and factory wastes, manure, and urban waste, has attracted attention of many researchers. Many studies have shown that application of biochar in the soil can improve the soil physical, chemical and biological properties. Despite this, the knowledge about the effect of biochar application on biological properties related to nutrient cycling of soil contaminated with microplastics is low and requires more investigations. Therefore, the current research aims to investigate the effect of high-density polyethylene microplastic particles and cow manure biochar on organic C, total N and some biological properties of soil affecting carbon and nitrogen cycling, including microbial respiration, microbial biomass carbon and nitrogen, urease activity, net nitrogen mineralization and nitrification.

Materials and methods

The experiment was conducted in the form of a completely randomized design with three replicates. The treatments included control soil, high-density polyethylene microplastic (2%), biochar (2%) and a mixture of microplastic and biochar (2%+2%), which were incubated for 60 days at laboratory temperature and 70% of field capacity. At the end of the incubation period, some soil properties such as organic C, total N, microbial respiration, microbial biomass carbon and nitrogen, urease activity and net nitrogen mineralization and nitrification were measured.

Results

The results showed that biochar and the combination of biochar and microplastic increased soil organic C and total N. Application of microplastic and biochar in the soil alone and in combination caused a significant decrease in soil microbial basal respiration by 6.89%, 15.10% and 16.31%, in compare to the control, respectively. Experimental treatments had no significant effect on microbial biomass nitrogen (p>0.05), but they were significant on microbial biomass carbon and the ratio of carbon to nitrogen microbial biomass (p<0.05). The results showed that although microplastic caused an insignificant decrease in soil microbial biomass carbon compared to control, adding of biochar and biochar with microplastics significantly increased microbial biomass carbon by 73.50% and 78.66%, respectively, compared to control. Microplastic alone had no significant effect on the ratio of carbon to nitrogen microbial biomass but the ratio was higher for the biochar treatment alone and with microplastic combination than the control by 79.54% and 84.57%, respectively. The results also showed that microplastic did not have a significant effect on urease enzyme activity, but biochar alone and with microplastic combination caused an increase of 86.66% and 213.33% compared to the control soil, respectively. Microplastic did not have a significant effect on the net nitrogen mineralization and nitrification, but the use of biochar alone and with microplastic combination significantly reduced net nitrogen nitrification by 83.33% and 116.66%, and net nitrogen mineralization by 13.43% and 8.95% in compare to the control, respectively.

Conclusion

The results showed that biochar and biochar combined with microplastic increasd soil organic C and total N. Microplastics reduced the soil microbial respiration. The use of biochar reduced microbial respiration in soil with and without microplastic. Microplastics did not have a significant effect on other measured characteristics, but the application of biochar in soil with and without microplastic increased microbial biomass carbon, ratio of carbon to nitrogen microbial biomass and urease activity. The application of biochar alone and with microplastic combination caused a significant reduction in soil net nitrogen mineralization and nitrification. The results generally showed that soil contamination with high density polyethylene microplastic in the applying concentration does not have a significant effect on organic C, total N and the measured biological properties of soil (except for microbial respiration), but biochar can affect the carbon and nitrogen cycling in both uncontaminated and microplastic-contaminated by changing the content of carbon and nitrogen and biological properties.

Author Contribution

Conceptualization, M.M and S.N.; methodology, M.M and S.N.; software, M.M; validation, S.N.; formal analysis, M.M; investigation, M.M and S.N.; resources, S.N.; data curation, M.M.; writing-original draft preparation, M.M.; writing-review and editing, S.N.; visualization, S.N.; supervision, S.N.; project administration, S.N.

All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data is available on reasonable request from the corresponding author.

Acknowledgements

The authors are very grateful to the Bu-Ali Sina University, Hamedan, Iran, for  supporting this research. 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The authors declare no conflict of interest.

Anderson, T. H., & K. H. Domsch. (1990). Application of eco-physiological quotients (qCO2 and Dq) on microbial biomasses from soils of different cropping histories. Soil Biology and Biochemistry, 22: 251-255.
Auta, H. S., Emenike, C. U., Jayanthi, B., & Fauziah, S. H. (2018). Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin, 127, 15-21.
Banu, M. R., Rani, B., Kavya, S. R., & Nihala Jabin, P. P. (2023). Biochar: A black carbon for sustainable agriculture. International Journal of Environment and Climate Change13(6), 418-432.
Blöcker, L., Watson, C., Wichern, F. (2020). Living in the plastic age- different short-term microbial response to microplastics addition to arable soils with contrasting soil organic matter content and farm management legacy. Environmental Pollution, 267, 115468.
Boots, B., Russell, C. W., Green, D. S. (2019). Effects of microplastics in soil ecosystems: above and below ground. Environmental Science and Technology, 53(19), 11496-11506.
Bonifazi, G., Capobianco, G., & Serranti, S. (2018). A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, 115-122.
Bremner, J. M. (1960). Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(1), 11-33.
Brookes P. C., Landman, A., Puden, G., Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry,17: 837-842.
Canatoy, R. C., Cho, S. R., Galgo, S. J. C., Park, S. Y., & Kim, P. J. (2024). Biochar manure decreases ammonia volatilization loss and sustains crop productivity in rice paddy. Frontiers in Environmental Science12, 1421320.
Chen, H., Wang, Y., Sun, X., Peng, Y., & Xiao, L. (2020). Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function. Chemosphere, 243, 125271.
Clough, T. J., Condron, L. M., Kammann, C., & Müller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3(2), 275-293.
Dewi, R. K., Gong, Y., Huang, Q., Li, P., Hashimi, R., & Komatsuzaki, M. (2024). Addition of biochar decreased soil respiration in a permanent no-till cover crop system for organic soybean production. Soil and Tillage Research, 237, 105977.
Dhir, B. (2021). Biochar amendment improves crop production in problematic soils. Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology, 189-204.
Du, H., & Wang, J. (2021). Characterization and environmental impacts of microplastics. Gondwana Research, 98, 63-75.
Duis, K., Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(1), 1-25.
Elbasiouny, H., Mostafa, A. A., Zedan, A., Elbltagy, H. M., Dawoud, S. F., Elbanna, B. A., Safaa A. El-Shazly et al Elbehiry, F. (2023). Potential Effect of Biochar on Soil Properties, Microbial Activity and Vicia faba Properties Affected by Microplastics Contamination. Agronomy, 13(1), 149.
Feng, C., Ma, Y., Jin, X., Wang, Z., Ma, Y., Fu, S., & Chen, H. Y. (2019). Soil enzyme activities increase following restoration of degraded subtropical forests. Geoderma, 351, 180-187.
Fuller, S., Gautam, A. (2016). A procedure for measuring microplastics using pressurized fluid extraction. Environmental Science and Technology, 50, 5774–5780.
Gao, W., Gao, K., Guo, Z., Liu, Y., Jiang, L., Liu, C., & Wang, G. (2021). Different responses of soil bacterial and fungal communities to 3 years of biochar amendment in an alkaline soybean soil. Frontiers in Microbiology, 12, 630418.
Ge, X., Cao, Y., Zhou, B., Xiao, W., Tian, X., & Li, M. H. (2020). Combined application of biochar and N increased temperature sensitivity of soil respiration but still decreased the soil CO2 emissions in moso bamboo plantations. Science of the Total Environment, 730, 139003.
Gulmine, J. V., Janissek, P. R., Heise, H. M., & Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer testing, 21(5), 557-563.
Guo, J. J., Huang, X. P., Xiang, L., Wang, Y. Z., Li, Y. W., Li, H., Cai, Q., Mo, C., Wong, M. H. (2020). Source, migration and toxicology of microplastics in soil. Environment International, 137, 105263.
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials344, 179-199.
Hasan, M. M., & Tarannum, M. N. (2025). Adverse impacts of microplastics on soil physicochemical properties and crop health in agricultural systems. Journal of Hazardous Materials Advances, 100528.‏
He, Y., DeSutter, T., Prunty, L., Hopkins, D., Jia, X., & Wysocki, D. A. (2012). Evaluation of 1:5 soil to water extract electrical conductivity methods. Geoderma, 185, 12-17.
Huang, Y., Zhao, Y., Wang, J., Zhang, M., Jia, W., Qin, X., (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254, 112983.
Jenkinson, D. S., & J. N. Ladd. (1981). Microbial biomass in soil: Measurement and turnover. In: Soil Biochemistry, (Eds.): E.A. Paul and J.N. Ladd. Vol. 5. Marcel Dekker, New York. 415-471.
Joergensen, R.G., & Wichern, F., (2018). Alive and kicking: why dormant soil microorganisms matter. Soil Biology and Biochemistry, 116, 419-430.
Kabir, E., Kim, K. H., & Kwon, E. E. (2023). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533.
Kang, Q., Zhang, K., Dekker, S. C., & Mao, J. (2025). Microplastics in soils: A comprehensive review. Science of The Total Environment960, 178298.‏
Keeney, D.R., & Nelson. D.W. (1982). Nitrogen-inorganic forms. In: A.L. Page (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison WI, USA. 643-698.
Khalid, A. R., Shah, T., Asad, M., Ali, A., Samee, E., Adnan, F., & Haider, G. (2023). Biochar alleviated the toxic effects of PVC microplastic in a soil-plant system by upregulating soil enzyme activities and microbial abundance. Environmental Pollution, 332, 121810.
Khan, T. F., & Sikder, A. H. F. (2024). Microplastic Can Decrease Enzyme Activities and Microbes in Soil. Open Journal of Soil Science, 14(01), 1-12.
Kim, S. W., Liang, Y., Zhao, T., & Rillig, M. C. (2021). Indirect effects of microplastic-contaminated soils on adjacent soil layers: Vertical changes in soil physical structure and water flow. Frontiers in Environmental Science, 9, 681934.‏
Lehmann, J., & Joseph, S. (2009). Biochar for environmental management- an introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management: Science and Technology, 1-11. London. Earth scan.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: an introduction. In Biochar for Environmental Management, (1-13). Routledge.
Liu, H., Yang, X., Liu, G., Liang, C., Xue, S., Chen, H., Ritsema, C. J., Geissen, V. (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185, 907-917.
Liu, W., Cao, Z., Ren, H., & Xi, D. (2022). Effects of microplastics addition on soil available nitrogen in farm and soil. Agronomy, 13(1), 75.
Liu, X., Li, Y., Yu, Y., & Yao, H. (2023). Effect of nonbiodegradable microplastics on soil respiration & enzyme activity: a meta-analysis. Applied Soil Ecology, 184, 104770.
Loeppert, R. H., Suarez, D. L., (1996). Carbonates and gypsum. In: Sparks, D.L. (Ed.), Methods of Soil Analysis. Part 3, Chemical Methods. SSSA, Madison, Wisconsin, USA. 437-474.
Lozano, Y. M., Lehnert, T., Linck, L. T., Lehmann, A., & Rillig, M. C. (2021). Microplastic Shape, Polymer Type, and Concentration Affect Soil Properties and Plant Biomass. Frontiers of Plant Science, 12. 616645.
Mukherjee, A., & Lal, R. (2013). Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy, 3(2), 313-339.
Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., & Børresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil and Tillage Research, 155, 35–44.  
Page, A. L., R. H. Miller & D. R. Keeney (1982). Methods of soil analyses. American Soil Science Agronomy Monograph, 1159.
Palansooriya, K. N., Sang, M. K., Igalavithana, A. D., Zhang, M., Hou, D., Oleszczuk, P., Sung, J., Ok, Y. S. (2022). Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 209, 112807.
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S.X., Bolan, N., Wang, H., Ok, Y. S., (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1, 3–22.
Qi, R., Jones, D. L., Li, Z., Liu, Q., Yan, C. (2020). Behavior of microplastics and plastic film residues in the soil environment: A critical review. Science of the Total Environment, 703, 134722.
Rillig, M. C., Kim, S. W., Kim, T. Y., Waldman, W. R. (2021). The global plastic toxicity debt. Environmental Science and Technology, 55, 2717–2719.
Robinson, G. W. (1922). A new method for the mechanical analysis of soils and other dispersions. The Journal of Agricultural Science, 12, 306-321.
Rong, L., Zhao, L., Zhao, L., Cheng, Z., Yao, Y., Yuan, C., Wang, L., Sun, H. (2021). LDPE microplastics affect soil microbial communities and nitrogen cycling. Science of the Total Environment, 773, 145640.
Saleem, I., Riaz, M., Mahmood, R., Rasul, F., Arif, M., Batool, A., Akmal, M, H., Azeem, F., & Sajjad, S. (2022). Biochar and microbes for sustainable soil quality management. Microbiome under changing climate, Woodhead Publishing. 289-311.
Seki, M., Sugihara, S., Miyazaki, H., Jegadeesan, M., Kannan, P., & Tanaka, H. (2020, May). Biochar combined with manure application can decrease organic matter decomposition compared to manure alone in the dry tropical cropland of south India. In EGU General Assembly Conference Abstracts. 17848.
Shi, J., Wang, J., Lv, J., Wang, Z., Peng, Y., & Wang, X. (2022). Microplastic presence significantly alters soil nitrogen transformation and decreases nitrogen bioavailability under contrasting temperatures. Journal of Environmental Management, 317, 115473.
Shyam, S., Ahmed, S., Joshi, S. J., & Sarma, H. (2025). Biochar as a Soil amendment: implications for soil health, carbon sequestration, and climate resilience. Discover Soil2(1), 18.Šlapáková, B., Jeřábková, J., Voříšek, K., Tejnecký, V., & Drábek, O. (2018). The biochar effect on soil respiration and nitrification. Plant Soil Environment, 64, 114-119.
Smith, B. (2021). The infrared spectra of polymers II: polyethylene. Spectroscopy, 24-29.
Sobarzo-Palma, C., López-Belchí, M. D., Noriega, F. A., Zornoza, R., Tortella, G., & Schoebitz, M. (2024). Microplastics Can Alter Plant Parameters Without Affecting the Soil Enzymatic Activity in White Lupine. Sustainability17(1), 149.
Su, J., Zhu, Y., Chen, X., Lu, X., Yan, J., Yan, L., & Zou, W. (2024). Biochar influences polyethylene microplastic-contaminated soil properties and enzyme activities. Agronomy, 14(12), 2919.
Tabatabai, M. A. & Bremner, J. M. (1972). Assay of urease activity in soils. Soil Biology and Biochemistry, 4: 479–486.
Thies, J. E., & Rillig, M. C. (2012). Characteristics of biochar: biological properties. In Biochar for Environmental Management, (117-138). Routledge.
Walkley, A., & Black, I. A. (1934). ʻʻAn examination of the method for determining soil organic matter, and a proposed modification of the chromic acid titration methodʼʼ. Soil Science, Vol. 37, No. 1, pp 29-38.
Wang J., Zhang M., Chen G., Zhu T., Zhang S., Teng Y., Christie P., Luo Y. (2016). Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere, 151:171–177.
Wang, F., Wang, Q., Adams, C. A., Sun, Y., Zhang, S. (2022). Effects of microplastics on soil properties: current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531.
Wang, S., Wang, W., Rong, S., Liu, G., Li, Y., Wang, X., & Liu, W. (2024). Key Factors and Mechanisms of Microplastics Affecting Soil Nitrogen Transformation: A Review. Soil and Environmental Health, 100101.
Horn, O., Nalli, S., Cooper, D., & Nicell, J. (2004). Plasticizer metabolites in the environment. Water Research, 38(17), 3693-3698.
Warnock, D. D., Lehmann, J., Kuyper, T. W., Rillig, M.C. (2007). Mycorrhizal responses to biochar in soil- concepts and mechanisms. Plant and Soil, 300, 9–20.
Wei, X., Wang, X., Ma, T., Huang, L., Pu, Q., Hao, M., & Zhang, X. (2017). Distribution and mineralization of organic carbon and nitrogen in forest soils of the southern Tibetan Plateau. Catena, 156, 298-304.
Xiang, Y., Rillig, M. C., Peñuelas, J., Sardans, J., Liu, Y., Yao, B., & Li, Y. (2024). Global responses of soil carbon dynamics to microplastic exposure: A data synthesis of laboratory studies. Environmental Science and Technology, 58(13), 5821-5831.
Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P.C., Tang, C., Gan, J., Xu, J. (2020). Microplastics in the soil environment: occurrence, risks, interactions and fate – a review. Critical Reviews in Environmental Science and Technology, 50, 2175–2222.
Xu, H., Cai, A., Wu, D., Liang, G., Xiao, J., Xu, M., & Zhang, W. (2021). Effects of biochar application on crop productivity, soil carbon sequestration, and global warming potential controlled by biochar C: N ratio and soil pH: A global meta-analysis. Soil and Tillage Research, 213, 105125.
Yang, H., Yumeng, Y., Yu, Y., Yinglin, H., Fu, B., & Wang, J. (2022). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. Ecotoxicology and Environmental Safety243, 114009.‏
Yi, M., Zhou, S., Zhang, L., & Ding, S. (2021). The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environment Research, 93(1), 24-32.
Yu, H., Qi, W., Cao, X., Hu, J., Li, Y., Peng, J., Hu, C., Qu, J., 2021. Microplastic residues in wetland ecosystems: do they truly threaten the plant-microbe-soil system? Environment International, 156, 106708.
Zhang, G. S., Zhang, F. X. (2020). Variations in aggregate-associated organic carbon and polyester microfibers resulting from polyester microfibers addition in a clayey soil. Environmental Pollution, 258, 113716.
Zhang, Y., Li, X., Xiao, M., Feng, Z., Yu, Y., & Yao, H. (2022). Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil. Science of the Total Environment, 806, 150714.
Zhang, Y., Yan, C., Wang, T., Zhang, G., Bahn, M., Mo, F., & Han, J. (2025). Biochar strategy for long-term N2O emission reduction: Insights into soil physical structure and microbial interaction. Soil Biology and Biochemistry202, 109685.
Zhao, T., Lozano, Y. M., & Rillig, M. C. (2021). Microplastics increase soil pH and decrease microbial activities as a function of microplastic shape, polymer type, and exposure time. Frontiers in Environmental Science, 9, 675803.
Zhao, S., Rillig, M. C., Bing, H., Cui, Q., Qiu, T., Cui, Y., & Fang, L. (2024). Microplastic pollution promotes soil respiration: A global‐scale meta‐analysis. Global Change Biology,30(7), 17415.
Zhou, Z., Hua, J., & Xue, J. (2023). Polyethylene microplastic and soil nitrogen dynamics: Unraveling the links between functional genes, microbial communities, and transformation processes. Journal of Hazardous Materials, 458, 131857.
Zhou, Z., Hua, J., Xue, J., & Yu, C. (2024). Differential impacts of polyethylene microplastic and additives on soil nitrogen cycling: A deeper dive into microbial interactions and transformation mechanisms. Science of the Total Environment, 173771.
Zhu, F., Yan, Y., Doyle, E., Zhu, C., Jin, X., Chen, Z., Wang, C., He, H., Zhou, D., Gu, C. (2022). Microplastics altered soil microbiome and nitrogen cycling: the role of phthalate plasticizer. Journal of Hazardous Materials, 427, 127944.