اثر فلزات سنگین نیکل و روی بر میزان رشد، انباشت آن‌ها و جذب و انتقال آهن در گیاه ریحان (Ocinum Basilicum L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست‌شناسی، دانشگاه پیام نور، تهران- ایران

2 گروه آموزشی زیست شناسی، دانشگاه فرهنگیان، صندوق پستی 889-14665،تهران- ایران

3 دانش آموخته ،گروه زیست‌شناسی، دانشکده علوم و فناوری‌های زیستی، دانشگاه اصفهان، اصفهان

چکیده

نیکل (Ni) و روی (Zn) از عناصر سنگین ضروری کم‌مصرف هستند که قسمت عمده آلودگی ناشی از آن‌ها، مربوط به استفاده روزافزون از کود‌های شیمیایی و آفت‌کش‌ها است. در این پژوهش اثر تیمارهای مختلف نیکل (0، 17، 43، 85 و 170 میلی‌مولار) و روی (0، 60، 120، 300 و 600 میلی‌مولار) بر میزان رشد، انباشت آن‌ها و همچنین اثر آن‌ها بر غلظت آهن در ریشه و ساقه گیاه ریحان ارزیابی شد. این آزمایش‌ها، طبق طرح کاملاً تصادفی (هر تیمار با سه تکرار) در دانشگاه اصفهان (سال 1396) انجام شد. گیاهچه‌های ریحان سبز که بذر آنها از موسسه پاکان بذر (اصفهان) تهیه شده بود، به‌مدت 10 روز در محیط‌های هیدروپونیک حاوی تیمارهای مختلف نیکل و روی قرار گرفتند. نتایج نشان داد، با افزایش غلظت نیکل و روی در محیط، رشد گیاه کاهش یافت. بطوری‌که‌ کاهش وزن خشک اندام‌های هوایی و ریشه برای نیکل در بالاترین سطح تنش (170 میلی‌مولار)، به ترتیب 8/52 و 9/65 درصد و برای روی (600 میلی‌مولار) به ترتیب 9/38 و 7/41 درصد بود. با افزایش غلظت عناصر سنگین در محیط، تجمع آنها در ریشه و اندام‌های هوایی افزایش یافت که با اختلال در انتقال آهن همراه شد. بنابراین میزان انباشت آهن در ریشه افزایش و مقدار آن در اندام‌های هوایی کاهش یافت. این افزایش تجمع در ریشه در بالاترین سطح تنش نیکل و روی (170 و 600 میلی‌مولار)، به ترتیب 51 و 9/89 درصد بود، اما میزان کاهش آهن در اندام‌های هوای 8/66 و  59 درصد بود. میزان تجمع عناصر در ریشه بیشتر از اندام‌های هوایی بود با این تفاوت که میزان انتقال روی (میانگین فاکتور انتقال برای تیمارها، 56/0) به برگ‌ها بیشتر از نیکل (میانگین فاکتور انتقال برای تیمارها 28/0) بود که نشان‌دهنده مقاومت بیشتر گیاه به روی است. در نتیجه مکانیسم‌ سازگاری ریحان، نسبت به نیکل و روی محدودکردن آن‌ها در ریشه است به‌همین دلیل میزان کاهش رشد در ریشه بیشتر بود، هرچند این گیاه مقاومت بیشتری نسبت به روی داشت. بنابراین استفاده بی‌رویه از کودهای شیمیایی ریز مغذی باعث آلودگی خاک‌های زراعی شده که نه‌تنها بازدارنده رشد محسوب شده بلکه باعث ورود آن‌ها به زنجیره‌های غذایی خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of nickel and zinc on growth, metal accumulation, and uptake and transport of iron in basil (Ocimum basilicum L.).

نویسندگان [English]

  • Behrooz Salehi-Eskandari 1
  • Ghasemi Zahra 2
  • Somayeh Mousavi Rizi 3
1 Department of Biology, Payame Noor University, Tehran, Iran
2 Department of Biology Education, Farhangian University, P.O. Box 14665-889, Tehran, Iran
3 Graduate student,, Department of Biology, Faculty of Science and Technology, University of Isfahan
چکیده [English]

Nickel (Ni) and zinc (Zn) are essential micronutrients and most of their contaminations are related to the increasing use of fertilizers and pesticides. The present study focuses on the effects of the different concentrations of Ni (0, 17, 43, 85 and 170 mM) and Zn (0, 60, 120, 300 and 600 mM) on the growth factors, Ni and Zn accumulation, and the concentration of Iron (Fe) in roots and shoots. Th experiments carried out in this study used a randomized complete block design with three replications in the growth chamber at Isfahan University. The basil plants the seeds of which were provided from Pakan Bazr Company (Isfahan) were transferred to hydroponic mediums and after proper vegetative growth, they were exposed to different concentrations of Ni and Zn for 10 days. The findings showed that the increasing concentrations of Ni and Zn resulted in a significant decrease in the growth, so that the shoots and roots dry weight decreased at the highest level of treatments in Ni (170 mM) in comparison with the control treatment by 52.8% and 65.9% and Zn (600 mM) by 38.9% and 41.7%, respectively. With the increasing concentration of Ni and Zn in the medium, the accumulation of both heavy metals in the roots and shoots increased which caused a disruption in Fe transport, hence an enhancement the in the accumulation of Fe in the roots, and decline its accumulation in shoots. Fe accumulation in root at highest level of Ni and Zn stress (170 and 600 mM) increased in comparison with the control treatment by 51% and 89.9%%, respectively, while it reduced in shoot at highest level of Ni and Zn stress by 66.8% and 59%, respectively.  However, translocation factor of Zn (mean translocation factor in treatments; 0.56) was higher than Ni (mean translocation factor in treatments; 0.28) which indicated that basil is resistant to Zn accumulation. These results revealed that basil is an Ni and Zn excluder plant, so root growth was restricted in comparison with shoot growth. Therefore, the excessive use of micronutrient fertilizers has not only contaminated agricultural soils, but also entered into food chains.

کلیدواژه‌ها [English]

  • Accumulation
  • Growth
  • Nickel
  • Ocimum basilicum
  • Zinc

EXTENDED ABSTRACT

 

Introduction

Nickel (Ni) and zinc (Zn) are essential micronutrients and most of their contaminations are related to the increasing use of fertilizers and pesticides. Basil (Ocimum basilicum L.) is a medicinal plant that is also used as a vegetable. By the increase in the Earth's population and consequently the rising demand for agricultural products, along with the limitation of farm lands, the use of chemical fertilizers to enhance their productivity has become common, Therefore, the contamination of agricultural soils has increased due to heavy metals. The present study focuses on the effects of the different concentrations of Ni (0, 17, 43, 85 and 170 mM) and Zn (0, 60, 120, 300 and 600 mM) on the growth factors, Ni and Zn accumulation, and the concentration of Iron (Fe) in roots and shoots.

Materials and methods

In this study, basil (Ocimum basilicum) seeds were obtained from Pakaan Bazr Company. The disinfected seeds were transferred to perlite pots for germination, watered with distilled water, and fed with a modified Hoagland solution at the two-leaf stage. After 12 days, four uniform seedlings were transferred to plastic pots containing half-strength Hoagland medium and grown in a greenhouse with day/night temperature of 25/20 °C, a 16 h photoperiod. After 25 days plants were transferred to hydroponic mediums and after proper vegetative growth, they were exposed to 0, 17, 43, 85, 170 mM treatments of nickel (NiSO4.6 H2O) and 0, 60, 120, 300, 600 mM treatments of zinc (ZnSO4.7 H2O) for 10 days. The nutrient solutions were aerated continuously and changed every three days. Shoot and root dry weights were measured after drying in an oven at 70 °C for 48 h and Ni, Zn and Fe concentrations were determined in root and shoots using a flame atomic absorption spectrophotometer (AAS, Shimadzu model 6200). The Ni, Zn, Fe translocation factor (TF) from root to shoot were calculated as their concentration in the shoot divided by their concentration in the root. The experiments carried out in this study used a randomized complete block design with three replications. Duncan’s test with P < 0.05 as significance threshold was used to compare individual means.

 Results

The results showed that with the increasing concentrations of Ni and Zn in the medium, the growth significantly decreased, so that the shoots and roots dry weight decreased at the highest level of treatments in Ni (170 mM) in comparison with the control treatment by 52.8% and 65.9% and Zn (600 mM) by 38.9% and 41.7%, respectively. The ratio of shoots to roots increased at the high levels of Ni treatment (85, 170 mM), but this increase only occurred at the highest level of Zn (600 mM). With increasing in the concentrations of heavy metals in the medium, their accumulation in the roots and shoots increased, but the accumulation in the roots was always more than in the shoots in both heavy metals. The translocation factor of these heavy metals to shoots varied, but the translocation factor of Zn was consistently greater than Ni which indicated basil is resistant to Zn accumulation. With the enhancing concentration of Ni and Zn in the medium, the accumulation of both heavy metals in the roots and shoots increased which caused a disruption in Fe transport, hence an enhancement the in the accumulation of Fe in the roots, and decline its accumulation in shoots. Under the highest levels of Ni and Zn stress (170 and 600 mM), Fe accumulation in the roots increased by 51% and 89.9%, respectively, compared to the control treatment. In contrast, Fe levels in the shoots decreased by 66.8% for Ni and by 59% for Zn under the same stress conditions. Additionally, the translocation factor for Zn (mean: 0.56) was greater than Ni (mean: 0.28).

Conclusion

Considering the higher accumulation of heavy metals Ni and Zn in the roots of the basil plants, they can be classified as excluder plants for these elements, so root growth was restricted in comparison with shoot growth. Although the basil displayed greater resistance to zinc. With increasing in the concentrations of essential heavy metals (Ni and Zn) in the medium, Fe accumulation in the roots also increased, while its transfer to the shoots decreased. This reduction in translocation of Fe is one of the reasons for the reduced growth in the shoots due to the deficiency of essential elements. Therefore, the excessive use of micronutrient fertilizers has not only contaminated agricultural soils, but also entered into food chains.

Author Contributions

Behrooz Salehi-Eskandari: Writing – review & editing, Software, Methodology. Zahra Ghasemi: Writing – review & editing. Somayeh Mousavi Rizi: writing – original draft, Investigation.

 

Data availability  

 Data will be made available on request.

Acknowledgements

The authors are thankful to the Graduate School of University of Isfahan for providing the research facilities needed for this study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

Aggarwal, N., Laura, J. S. & Sheoran, I. S. (1990). Effect of cadmium and nickel on germination, early seedling growth and photosynthesis of wheat and pigeonpea. 141-147.
Ahmad, M. S. A., Ashraf, M. & Hussain, M. (2011). Phytotoxic effects of nickel on yield and concentration of macro-and micro-nutrients in sunflower (Helianthus annuus L.) achenes. Journal of Hazardous Materials, 185(2-3), 1295-1303.
Alloway, B. (1995). Soil processes and the behaviour of metals. Heavy metals in soils, 13, 3488.
Alloway, B. (2008). Zinc in Soils and Crop Nutrition. International Zinc Association and International Fertilizer Association, 16.
Ameen, N., Amjad, M., Murtaza, B., Abbas, G., Shahid, M., Imran, M., . . . Niazi, N. K. (2019). Biogeochemical behavior of nickel under different abiotic stresses: toxicity and detoxification mechanisms in plants. Environmental Science and Pollution Research, 26, 10496-10514.
Antonkiewicz, J., Jasiewicz, C., Koncewicz-Baran, M. & Sendor, R. (2016). Nickel bioaccumulation by the chosen plant species. Acta Physiologiae Plantarum, 38, 1-11.
Batool, S. (2018). Impact of bioaccumulation of nickel on growth, seed yield and mineral uptake of chickpea (Cicer arietinum L.) varieties. Pak. J. Bot, 50(6), 2147-2150.
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I. & Lux, A. (2007). Zinc in plants. New phytologist, 173(4), 677-702.
Chen, C., Huang, D. & Liu, J. (2009). Functions and toxicity of nickel in plants: recent advances and future prospects. Clean–soil, air, water, 37(4‐5), 304-313.
Choi, S., Hu, Y.-M., Corkins, M. E., Palmer, A. E. & Bird, A. J. (2018). Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS genetics, 14(3), e1007262.
Dinh, N. T., Vu, D. T., Mulligan, D. & Nguyen, A. V. (2015). Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environmental and Experimental Botany, 110, 85-95.
Ekmekci, Y., Erdal, Ş. Ç., Nalçaiyi, A. S. B. & Cicek, N. (2020). Acquisition of boron tolerance by salt pretreatment in two sunflower cultivars. Turkish Journal of Botany, 44(2), 153-166.
Gajewska, E., Skłodowska, M., Słaba, M. & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia plantarum, 50, 653-659.
Garg, N. & Singh, S. (2018). Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp.(pigeonpea) genotypes under cadmium and zinc stress. Journal of plant growth regulation, 37, 46-63.
Gautam, S., Rathoure, A., Chhabra, A. & Pandey, S. (2017). Effects of nickel and zinc on biochemical parameters in plants-a review. Octa Journal of Environmental Research, 5(1).
Georgiadou, E. C., Kowalska, E., Patla, K., Kulbat, K., Smolińska, B., Leszczyńska, J. & Fotopoulos, V. (2018). Influence of heavy metals (Ni, Cu, and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in basil (Ocimum basilicum L.) plants. Frontiers in Plant Science, 9, 862.
González, C. I., Maine, M. A., Cazenave, J., Hadad, H. R. & Benavides, M. P. (2015). Ni accumulation and its effects on physiological and biochemical parameters of Eichhornia crassipes. Environmental and Experimental Botany, 117, 20-27.
Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M., . . . Khan, T. A. (2019). Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environmental Science and Pollution Research, 26, 12673-12688.
Helaoui, S., Mkhinini, M., Boughattas, I., Bousserrhine, N. & Banni, M. (2023). Nickel Toxicity and Tolerance in Plants. Heavy Metal Toxicity and Tolerance in Plants: A Biological, Omics, and Genetic Engineering Approach, 231-250.
Iori, V., Pietrini, F., Cheremisina, A., Shevyakova, N. I., Radyukina, N., Kuznetsov, V. V. & Zacchini, M. (2013). Growth responses, metal accumulation and phytoremoval capability in Amaranthus plants exposed to nickel under hydroponics. Water, Air, & Soil Pollution, 224, 1-10.
Kachenko, A. G., Singh, B. & Bhatia, N. P. (2007). Heavy metal tolerance in common fern species. Australian journal of botany, 55(1), 63-73.
Kaur, H. & Garg, N. (2021). Zinc toxicity in plants: a review. Planta, 253(6), 129.
Khakdan, F., Ranjbar, M., Nasiri, J., Ahmadi, F. S., Bagheri, A. & Alizadeh, H. (2016). The relationship between antioxidant compounds contents and antioxidant enzymes under water-deficit stress in the three Iranian cultivars of basil (Ocimum basilicum L.). Acta Physiologiae Plantarum, 38, 1-15.
Marschner, H. (2011). Marschner's mineral nutrition of higher plants. Academic press.
McGrath, D. (1995). Organic micropollutant and trace element pollution of Irish soils. Science of the Total Environment, 164(2), 125-133.
Mohtadi, A. & Schat, H. (2024). A comparison of nickel and zinc uptake and translocation in three species of Brassicaceae: The Ni hyperaccumulator Odontarrhena corsica and two non‐hyperaccumulators, Aurinia saxatilis and Lobularia maritima. Ecological Research.
Molas, J. (2002). Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni (II) complexes. Environmental and Experimental Botany, 47(2), 115-126.
Mousavi, S. M., Raiesi, T., Sedaghat, A., & Srivastava, A. K. (2023). Potentially Toxic Metals: Their Effects on the Soil-Human Health Continuum. Journal of Advances in Environmental Health Research, 12(2), 86-101.
 Mousavi, S. M., Brodie, G., Payghamzadeh, K., Raiesi, T., & Strivastava, A. K. (2022). Lead Bioavailability in the Environment: Its Exposure and and Effects. Journal of Advances in Environmental Health Research, 10(1), 1-14.
Mustafa, A., Zulfiqar, U., Mumtaz, M. Z., Radziemska, M., Haider, F. U., Holatko, J., . . . Kintl, A. (2023). Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere, 328, 138574.
Mustafiz, A., Ghosh, A., Tripathi, A. K., Kaur, C., Ganguly, A. K., Bhavesh, N. S., . . . Singla‐Pareek, S. L. (2014). A unique N i2+‐dependent and methylglyoxal‐inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. The Plant Journal, 78(6), 951-963.
Nakazawa, R., Kameda, Y., Ito, T., Ogita, Y., Michihata, R. & Takenaga, H. (2004). Selection and characterization of nickel-tolerant tobacco cells. Biologia plantarum, 48, 497-502.
Rao, K. M. & Sresty, T. (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant science, 157(1), 113-128.
Salehi-Eskandari, B., Ghaderian, S. M., Ghasemi, R. & Schat, H. (2017). Optimization of seed germination in an Iranian serpentine endemic, Fortuynia garcinii. Flora, 231, 38-42.
Salehi-Eskandari, B., & Hesami, R. (2024). A comparison of lead accumulation and growth factors of metallicolous and non-metallicolous populations of Marrubium cuneatum in hydroponic conditions. Iranian Journal of Soil and Water Research, 54(11), 1681-1695. (In Persian).
Salehi Eskandari, B., Ghaderian, S. M. & Schat, H. (2017). The role of nickel (Ni) and drought in serpentine adaptation: contrasting effects of Ni on osmoprotectants and oxidative stress markers in the serpentine endemic, Cleome heratensis, and the related non-serpentinophyte, Cleome foliolosa. Plant and Soil, 417, 183-195.
Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., . . . Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere, 171, 710-721.
Seregin, I., Erlikh, N. & Kozhevnikova, A. (2014). Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens. Russian journal of plant physiology, 61, 204-214.
Šimon, M., Shen, Z.-J., Ghoto, K., Chen, J., Liu, X., Gao, G.-F., . . . Zhang, J.-Y. (2021). Proteomic investigation of Zn-challenged rice roots reveals adverse effects and root physiological adaptation. Plant and Soil, 460, 69-88.
Steingräber, L. F., Ludolphy, C., Metz, J., Kierdorf, H. & Kierdorf, U. (2022). Uptake of lead and zinc from soil by blackberry plants (Rubus fruticosus L. agg.) and translocation from roots to leaves. Environmental Advances, 9, 100313.
Tsonev, T. & Cebola Lidon, F. J. (2012). Zinc in plants-an overview. Emirates Journal of Food & Agriculture (EJFA), 24(4).
Vidican, R., Mihăiescu, T., Pleșa, A. & Crișan, I. (2020). Conceptual delimitation of heavy metals in environmental science. ProEnvironment Promediu, 13(43).
Visioli, G., Conti, F. D., Gardi, C. & Menta, C. (2014). Germination and root elongation bioassays in six different plant species for testing Ni contamination in soil. Bulletin of Environmental Contamination and Toxicology, 92, 490-496.
Wakeel, A., Xu, M. & Gan, Y. (2020). Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. International journal of molecular sciences, 21(3), 728.
Wu, W., Wu, P., Yang, F., Sun, D.-l., Zhang, D.-X. & Zhou, Y.-K. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53-61.
Zhang, H., Yang, J., Li, W., Chen, Y., Lu, H., Zhao, S., . . . Li, C. (2019). PuHSFA4a enhances tolerance to excess zinc by regulating reactive oxygen species production and root development in Populus. Plant Physiology, 180(4), 2254-2271.