رویکردی نوین در تخمین ضریب زبری مانینگ در فازهای مختلف آبیاری جویچه‌ای با بهره‌گیری از پردازش تصویر و یادگیری ماشین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده کشاورزی هسته ای، پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی، کرج- ایران

2 گروه آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 گروه مهندسی ماشین‌های کشاورزی، پردیس کشاورزی ومنابع طبیعی، دانشگاه تهران، کرج، ایران

4 گروه پردازش سیگنال، دانشکده مهندسی کامپیوتر و برق، دانشگاه آرهوس، آرهوس، دانمارک

چکیده

این تحقیق به بررسی کارایی استفاده تلفیقی از تکنیک‌های پردازش تصویر و روش‌های یادگیری ماشین برای تخمین ضریب زبری مانینگ در آبیاری جویچه‌ای در فازهای پیشروی و ذخیره پرداخته است. برای این منظور، مقادیر مختلف دبی ورودی، نوبت‌، مرحله و دورهای متفاوت آبیاری در دو نوع بافت خاک در نظر گرفته شد. تصاویری از سطح جویچه‌ها قبل و بعد از هر آبیاری ثبت گردید و ضریب زبری در فازهای پیشروی و ذخیره به ترتیب با استفاده از مدل SIPAR_ID و معادله مانینگ تخمین زده شد. سپس با استفاده از این داده‌ها، الگوریتمی بر مبنای استفاده تلفیقی از تکنیک‌های پردازش تصویر و روش‌های یادگیری ماشین در سه سناریوی مختلف توسعه یافت.  نتایج نشان داد که الگوریتم با استفاده از تصاویر یا داده‌های مزرعه‌ای به‌صورت مجزا نمی‌تواند به‌درستی آموزش ببیند و دقت بسیار پایینی دارد؛ چراکه برخی از ویژگی‌ها صرفاً از تصاویر و برخی دیگر از داده‌های مزرعه‌ای قابل‌دسترسی هستند. نتایج همچنین بیانگر، دقت بسیار مناسب الگوریتم در تخمین ضریب زبری مانینگ در فازهای پیشروی و ذخیره با استفاده از تلفیق تصاویر و برخی داده‌های مزرعه‌ای نظیر سطح مقطع جریان و دبی، بود. در سناریوی منتخب، روش جنگل تصادفی و CART با شاخص‌های precision، recall و F1-score برابر با ۹۵، ۹۶ و ۹۵ درصد، بهترین عملکرد را در تخمین ضریب زبری مانینگ نسبت به دیگر روش‌های یادگیری ماشین داشتند. در نهایت پیشنهاد شد که تحقیقات مشابهی با در نظر گرفتن سایر عوامل مؤثر بر زبری (نظیر پوشش گیاهی) و در شرایط متفاوت مزرعه‌ای (نظیر بافت و ساختمان خاک متفاوت) صورت پذیرد و الگوریتم متناسب با آن مجدداً آموزش ببیند تا کارایی و جامعیت آن ارتقا یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Novel Approach for Manning’s Roughness Coefficient Estimation in Furrow Irrigation Phases Using Image Processing and Machine Learning

نویسندگان [English]

  • Hadi Rezaei rad 1
  • Hamed Ebrahimian 2
  • Abdolmajid Liaghat 2
  • Mahmoud Omid 3
  • Nima Teimouri 4
1 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
2 Department of Irrigation & Reclamation Engineering, Faculty of Agriculture Engineering & Technology, University of Tehran, Karaj, Iran
3 Department of Agricultural Machinery Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 Signal Processing & Machine Learning Section, Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
چکیده [English]

This study investigates the effectiveness of combining image processing techniques and machine learning methods to estimate the Manning roughness coefficient in furrow irrigation during the advance and storage phases. For this purpose, various input discharge values, irrigation cycles, phases, and soil texture types were considered. Images of the furrow surface were captured before and after each irrigation event, and the roughness coefficient in the advance and storage phases was estimated using the SIPAR_ID model and the Manning equation, respectively. Based on this data, an algorithm was developed that integrated image processing techniques with machine learning methods and was tested in three different scenarios. The results showed that the algorithm, when using either images or field data separately, could not be properly trained and had very low accuracy, as some features were only accessible from images and others from field data. The results also revealed that the algorithm, when combining images with certain field data such as flow cross-section and discharge, performed very well in estimating the Manning roughness coefficient during both the advance and storage phases. In this scenario, the Random Forest and CART methods, with precision, recall, and F1-score values of 95%, 96%, and 95% respectively, outperformed other machine learning methods in estimating the Manning roughness coefficient. Finally, it was suggested that similar studies be conducted considering other factors affecting roughness under different conditions, and that the algorithm be retrained accordingly to improve its performance and comprehensiveness.

کلیدواژه‌ها [English]

  • Manning roughness coefficient
  • image processing
  • machine learning
  • advance and phase
  • phases

Introduction

Efficient water management in furrow irrigation is significantly influenced by various parameters, such as soil texture, furrow geometry, slope, and especially Manning's roughness coefficient. Accurate estimation of this coefficient is essential for simulating water flow. However, its temporal and spatial variability presents challenges, as it is influenced by factors like water infiltration into the soil, changes in soil composition, and the presence of vegetation. Traditional methods often estimate roughness with limited accuracy, overlooking these temporal and spatial variations and assuming the coefficient remains constant during irrigation. Such assumptions can lead to significant errors in flow simulation in surface irrigation. In this study, we propose an integrated approach that combines image processing and machine learning methods to provide accurate and rapid estimation of Manning's roughness coefficient in both the advance and storage stages.

Materials and Methods

In this study, we developed an algorithm that combines image processing techniques and machine learning methods, including Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest Neighbor (KNN), Decision Tree (CART), Random Forest (RF), Support Vector Machine (SVM), and Multilayer Perceptron (MLP), to estimate the Manning roughness coefficient in furrow irrigation. This algorithm is specifically designed for the advance and storage phases of irrigation in bare furrows. The accuracy of Manning roughness coefficient estimation was evaluated using the developed algorithm under three scenarios: (i) using image data alone, (ii) using only field data, and (iii) combining both image and field data.

To achieve this, six different inflow rates were tested across two categories, low and high flow, with average flow rates of 0.27 and 0.53 L/s, respectively. Additional parameters included three irrigation events (first to third), two irrigation phases (advance and storage), two irrigation intervals (5 and 10 days), and two soil textures. Images of the furrow surface were taken from a height of 100 cm above the soil under controlled lighting conditions before and after each irrigation event. The Manning roughness coefficient was determined for the advance and storage phases using the SIPAR_ID model and Manning equation, respectively.

Results and Discussion

In the first step, Manning’s roughness coefficient values were determined for the advance and storage phases, yielding accurate results that supported their use in the algorithm. In terms of numerical accuracy, the model’s R² values for the advance phase ranged between 0.91 and 1.0, with a mean of 0.995, indicating strong predictive power. The root mean square error (RMSE) for this phase was between 0.2 and 2.6 minutes, with an average of 0.36 minutes, while the relative error (RE) remained consistently low, below 4.24%. For the storage phase, Manning’s roughness coefficient values averaged 0.073 in field E and 0.041 in field F, demonstrating a decline in roughness as successive irrigation events smoothed the soil surface. These results, which aligned with physical observations, confirmed the high accuracy of the initial estimates and justified their use in the developed algorithm. Following this validation, the performance of the algorithm was evaluated under three scenarios. The hybrid approach that integrated both image and field data outperformed the other two scenarios, achieving the highest accuracy in estimating Manning’s roughness coefficient. Using only image data resulted in lower accuracy, with Random Forest achieving an accuracy of 60%, recall of 60%, and precision of 55%, underscoring the necessity of combining data sources. In the hybrid scenario, Random Forest provided the best classification results, achieving a precision of 95%, recall of 96%, and F1-score of 95%. The CART model also showed competitive performance, with accuracy and precision metrics closely following those of Random Forest. These findings indicate that the combined approach of image and field data provides a more reliable and precise estimation of Manning’s roughness coefficient across different irrigation conditions and phases.

Conclusion

This study introduces a novel method for estimating the Manning roughness coefficient in furrow irrigation systems by combining image processing and machine learning techniques. This approach provides a more efficient and precise solution, particularly in furrows without vegetation. Future work should include additional parameters, such as lighting conditions, image angles, as well as various hydraulic and field conditions, to refine the algorithm and enhance its applicability under diverse real-world situations. This research advances the development of automated, precise estimation methods for improved irrigation management and water use efficiency.

Author Contributions

HRR, HE, AL, and MO conceptualized the research topic and formulated the objectives and methodology of the research. HRR carried out the field experiments as well as the data curation of the research work. HRR and MO developed the algorithm. HRR, HE, MO, and AL participated in the writing of the manuscript. All the authors read and approved the final manuscript for publication.

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

All data generated and analyzed during this study are included in this article.

Acknowledgements

The authors would like to acknowledge the fnancial support of University of Tehran Science and Technology Park for this research under grant number 5888656.

Ethical considerations

The study was approved by the Ethics Committee of the University of ABCD (Ethical code: IR.UT.RES.2024.500). The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., & Ghalhari, G. A. F. (2020). Machine learning to estimate surface soil moisture from remote sensing data. Water (Switzerland), 12(11), 1–28. https://doi.org/10.3390/w12113223
Amiri, M. J., Bahrami, M., Hamidifar, H., & Eslamian, S. (2016). Modification of furrow Manning’s roughness coefficient estimation by finite difference technique under surge and continuous flow. International Journal of Hydrology Science and Technology, 6(3), 226–237. https://doi.org/10.1504/IJHST.2016.077390
Angelaki, A., Singh Nain, S., Singh, V., & Sihag, P. (2018). Estimation of models for cumulative infiltration of soil using machine learning methods. ISH Journal of Hydraulic Engineering, 27(2), 162–169. https://doi.org/10.1080/09715010.2018.1531274
Ansari, N., Ratri, S. S., Jahan, A., Ashik-e-rabbani, M., & Rahman, A. (2021). Inspection of paddy seed varietal purity using machine vision and multivariate analysis. Journal of Agriculture and Food Research, 3(December 2020), 100109. https://doi.org/10.1016/j.jafr.2021.100109
Bahmani, O., Akhavan, S., Khoramian, M., & Gholizadeh Khalteh, Gh. (2020). Effect of Different Tillage Methods and furrow spacing on Soil Hydraulic Characteristics in Furrow Irrigation. Irrigation Sciences and Engineering, 43(1), 145–156. https://doi.org/10.22055/jise.2018.24226.1712
Bautista, E., & Schlegel, J. L. (2017). Estimation of Infiltration and Hydraulic Resistance in Furrow Irrigation, with Infiltration Dependent on Flow Depth. Transactions of the ASABE, 60(6), 1873–1884. https://doi.org/10.13031/trans.12263
Berkson, J. (1944). Application to the Logistic Function to Bio-Assay. Journal of the American Statistical Association, 39(227), 357. https://doi.org/10.2307/2280041
Blei, D. M., Ng, A. Y., & Edu, J. B. (2003). Latent Dirichlet Allocation Michael I. Jordan. Journal of Machine Learning Research, 3, 993–1022.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). Training algorithm for optimal margin classifiers. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, 144–152. https://doi.org/10.1145/130385.130401
Breiman, L. (1984). Classification and Regression Trees . In Chapter 7 (Issue January). Chapman and Hall/CRC.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. In Classification and Regression Trees. CRC Press. https://doi.org/10.1201/9781315139470/CLASSIFICATION-REGRESSION-TREES-LEO-BREIMAN
Brosnan, T., & Sun, D. W. (2004). Improving quality inspection of food products by computer vision - A review. Journal of Food Engineering, 61, 3–16. https://doi.org/10.1016/S0260-8774(03)00183-3
Brynolfsson, P., Löfstedt, T., Asklund, T., Nyholm, T., & Garpebring, A. (2018). PV-0527: Gray-level invariant Haralick texture features. Radiotherapy and Oncology, 127, S279–S280. https://doi.org/10.1016/S0167-8140(18)30837-5
Capra, A., & Scicolone, B. (2002). Estimation of Manning Roughness Coefficient for Bare and Vegetated Furrow Irrigation. Biosystems Engineering, 83(1), 119–126. https://doi.org/10.1006/bioe.2002.0092
Chung, S. O., Cho, K. H., Cho, J. W., Jung, K. Y., & Yamakawa, T. (2012). Soil Texture Classification Algorithm Using RGB Characteristics of Soil Images. Journal of the Faculty of Agriculture Kyushu University, 57(2), 393–397.
Clemmens, A. J., Eisenhauer, D. E., & Maheshwari, B. L. (2001). Infiltration and Roughness Equations for Surface Irrigation: How Form Influences Estimation. ASAE Meeting Paper No. 01-2255, 1–19.
Cover, T. M., & Hart, P. E. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964
Díaz, R. G. (2005). Analysis of Manning coefficient for small-depth flows on vegetated beds. Hydrological Processes, 19(16), 3221–3233. https://doi.org/10.1002/hyp.5820
Dong, Q., Zhang, S., Bai, M., Xu, D., & Feng, H. (2018). Modeling the effects of spatial variability of irrigation parameters on border irrigation performance at a field scale. Water (Switzerland), 10(12). https://doi.org/10.3390/w10121770
Esfandiari, M., & Maheshwari, B. L. (1998). Suitability of Selected Flow Equations and Variation of Manning’s n in Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 124(2), 89–95. https://doi.org/10.1061/(ASCE)0733-9437(1998)124:2(89)
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian Network Classifiers . Machine Learning, 29, 131–163.
Gillies, M. H., & Smith, R. J. (2015). SISCO: surface irrigation simulation, calibration and optimisation. Irrigation Science, 33(5), 339–355. https://doi.org/10.1007/s00271-015-0470-8
Gilliot, J. M., Vaudour, E., & Michelin, J. (2017). Soil surface roughness measurement: A new fully automatic photogrammetric approach applied to agricultural bare fields. Computers and Electronics in Agriculture, 134, 63–78. https://doi.org/10.1016/j.compag.2017.01.010
Grassi, C. J. (1972). Infiltration Characteristics of Furrow Irrigation in Heavy-Textured Soil. Wageningen University.
Han, Y., Song, T., Feng, J., & Xie, Y. (2021). Grayscale-inversion and rotation invariant image description with sorted LBP features. Signal Processing: Image Communication, 99, 116491. https://doi.org/10.1016/J.IMAGE.2021.116491
Haralick, R. M., Dinstein, I., & Shanmugam, K. (1973). Textural Features for Image Classification. Transactions on Systems, Man and Cybernetics, SMC-3(6), 610–621. https://doi.org/10.1109/TSMC.1973.4309314
Harun-ur-Rashid, M. (1990). Estimation of Manning’s roughness coefficient for basin and border irrigation. Agricultural Water Management, 18, 29–33.
Heermann, D. F., Wenstrom, R. J., & Evans, N. A. (1969). Prediction of Flow Resistance in Furrows from Soil Roughness. TRANSACTIONS of the ASAE, 482–489.
Hu, M. K. (1962). Visual Pattern Recognition by Moment Invariants. IRE Transactions on Information Theory, 8(2), 179–187. https://doi.org/10.1109/TIT.1962.1057692
Kamali, P., Ebrahimian, H., & Parsinejad, M. (2018). Estimation of Manning roughness coefficient for vegetated furrows. Irrigation Science, 36(6), 339–348. https://doi.org/10.1007/s00271-018-0593-9
Kaplan, K., Kaya, Y., Kuncan, M., & Ertunç, H. M. (2020). Brain tumor classification using modified local binary patterns (LBP) feature extraction methods. Medical Hypotheses, 139, 109696. https://doi.org/10.1016/J.MEHY.2020.109696
Kassem, M. A., & Ghonimy, M. I. (2011). DETERMINATION OF MANNING ROUGHNESS COEFFICIENT FOR BORDER IRRIGATION SYSTEM. Misr Journal of Agricultural Engineering, 28(2), 302–323. https://doi.org/10.21608/mjae.2011.105095
Kumar, V., Vimal, B. K., Kumar, R., Kumar, R., & Kumar, M. (2014). Determination of soil pH by using digital image processing technique. Journal of Applied and Natural Science, 321, 0–4.
Li, Z., & Zhang, J. (2001). Calculation of Field Manning’s Roughness Coefficient. Agricultural Water Management, 49, 153–161.
Maheshwari, B. L. (1992). Suitability of different flow equations and hydraulic resistance parameters for flows in surface irrigation: A review. Water Resources Research, 28(8), 2059–2066. https://doi.org/10.1029/92WR00424
Mailapalli, D. R., Raghuwanshi, N. S., Singh, R., Schmitz, G. H., & Lennartz, F. (2008). Spatial and Temporal Variation of Manning’s Roughness Coefficient in Furrow Irrigation. Journal of Irrigation and Drainage Engineering, 134(2), 185–192. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(185)
Mauricio, G., Melecio, I., & Eduardo, R. (2015). Roughness Manning Coefficient Variation in Irrigation Open Channels by Changing Width and Roughness Surface in the Armfield C4MKII Equipment. ASABE Annual International Meeting, 1–8.
Mazarei, R., Soltani Mohammadi, A., Ebrahimian, H., & Naseri, A. A. (2021). Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates. Agricultural Water Management, 245, 106465. https://doi.org/10.1016/j.agwat.2020.106465
Miao, Q., Shi, H., Gonçalves, J. M., & Pereira, L. S. (2015). Field assessment of basin irrigation performance and water saving in Hetao, Yellow River basin: Issues to support irrigation systems modernisation. Biosystems Engineering, 136, 102–116. https://doi.org/10.1016/j.biosystemseng.2015.05.010
Mwendera, E. J., & Feyen, J. (1992). Estimation of depression storage and Manning’s resistance coefficient from random roughness measurements. Geoderma, 52(3–4), 235–250. https://doi.org/10.1016/0016-7061(92)90039-A
Nie, W. B., Fei, L. J., & Ma, X. Y. (2014). Applied closed-end furrow irrigation optimized design based on field and simulated advance data. Journal of Agricultural Science and Technology, 16(2), 395–408.
Nie, W.-B., Li, Y.-B., Zhang, F., Dong, S.-X., Wang, H., & Ma, X.-Y. (2018). A Method for Determining the Discharge of Closed-End Furrow Irrigation Based on the Representative Value of Manning’s Roughness and Field Mean Infiltration Parameters Estimated Using the PTF at Regional Scale. Water, 10(12), 1825. https://doi.org/10.3390/w10121825
Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 29(1), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4
Omid, M., Mahmoudi, A., & Omid, M. H. (2010). Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural network (ANN) of impact acoustics. Expert Systems with Applications, 37(10), 7205–7212. https://doi.org/10.1016/j.eswa.2010.04.008
Peng, X., Horn, R., Peth, S., & Smucker, A. (2006). Quantification of soil shrinkage in 2D by digital image processing of soil surface. Soil and Tillage Research, 91(1–2), 173–180. https://doi.org/10.1016/j.still.2005.12.012
Prakash, K., & Saradha, S. (2021). Efficient prediction and classification for cirrhosis disease using LBP, GLCM and SVM from MRI images. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2021.03.418
Rahimi-ajdadi, F., Abbaspour-gilandeh, Y., & Mollazade, K. (2018). Development of a novel machine vision procedure for rapid and non-contact measurement of soil moisture content. Measurement, 121(February), 179–189. https://doi.org/10.1016/j.measurement.2018.02.060
Rahimi-Ajdadi, F., Gilandeh, Y. A., Mollazade, K., & Hasanzadeh, R. P. (2016). Application of machine vision for classification of soil aggregate size. Soil and Tillage Research, 162, 8–17. https://doi.org/10.1016/j.still.2016.04.012
Ramezani Etedali, H., Ebrahimian, H., Abbasi, F., & Liaghat, A. (2011). Evaluating models for the estimation of furrow irrigation infiltration and roughness. Spanish Journal of Agricultural Research, 9(2), 641. https://doi.org/10.5424/sjar/20110902-342-10
Ramezani Etedali, H., Liaghat, A., & Abbasi, F. (2012). Evaluation of The EVALUE Model for Estimating Manning’s Roughness in Furrow Irrigation. Irrigation and Drainage, 61(3), 410–415. https://doi.org/10.1002/ird.650
Rezaei Rad, H., Ebrahimian, H., Liaghat, A. et al. Temporal variation of Manning roughness coefficient in furrow irrigation and its relationship with various field parameters. Appl Water Sci 15, 7 (2025). https://doi.org/10.1007/s13201-024-02334-9
Riegler-Nurscher, P., Prankl, J., & Vincze, M. (2019). Tillage Machine Control Based on a Vision System for Soil Roughness and Soil Cover Estimation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11754 LNCS, 201–210. https://doi.org/10.1007/978-3-030-34995-0_19
Rodríguez, J. A., & Martos, J. C. (2010). SIPAR_ID: Freeware for surface irrigation parameter identification. Environmental Modelling & Software, 25(11), 1487–1488. https://doi.org/10.1016/j.envsoft.2008.09.001
Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: explorations in the microstructure of cognition. MIT Press. https://dl.acm.org/doi/10.5555/104279
Sabzi, S., Abbaspour-Gilandeh, Y., & Javadikia, H. (2017). The use of soft computing to classification of some weeds based on video processing. Applied Soft Computing, 56, 107–123. https://doi.org/10.1016/j.asoc.2017.03.006
Salahou, M. K., Jiao, X., & Lü, H. (2018). Border irrigation performance with distance-based cut-off. Agricultural Water Management, 201(2016), 27–37. https://doi.org/10.1016/j.agwat.2018.01.014
Sauzet, O., Cammas, C., Gilliot, J. M., Bajard, M., & Montagne, D. (2017). Development of a novel image analysis procedure to quantify biological porosity and illuvial clay in large soil thin sections. Geoderma, 292, 135–148. https://doi.org/10.1016/j.geoderma.2017.01.004
Sedaghatdoost, A., & Ebrahimian, H. (2015). Calibration of infiltration, roughness and longitudinal dispersivity coefficients in furrow fertigation using inverse modelling with a genetic algorithm. Biosystems Engineering, 136, 129–139. https://doi.org/10.1016/j.biosystemseng.2015.05.011
Segeren, A. G., & Trout, T. J. (1991). Hydraulic Resistance of Soil Surface Seals in Irrigated Furrows. Soil Science Society of America Journal, 55(3), 640–646. https://doi.org/10.2136/sssaj1991.03615995005500030002x
Sepaskhah, A. R., & Bondar, H. (2002). Estimation of Manning Roughness Coefficient for Bare and Vegetated Furrow Irrigation. Biosystems Engineering, 82(3), 351–357. https://doi.org/10.1006/bioe.2002.0076
Seyedzadeh, A., Panahi, A., Maroufpoor, E., & Singh, V. P. (2019). Development of an analytical method for estimating Manning’s coefficient of roughness for border irrigation. Irrigation Science, 37(4), 523–531. https://doi.org/10.1007/s00271-019-00631-9
Shit, P. K., Bhunia, G. S., & Maiti, R. (2015). Soil crack morphology analysis using image processing techniques. Modeling Earth Systems and Environment, 1(November), 1–7. https://doi.org/10.1007/s40808-015-0036-z
Strelkoff, T. S., Clemmens, A. J., El-Ansary, M., & Awad, M. (1999). Surface-Irrigation Evaluation Models: Application To Level Basins In Egypt. Transactions of the ASAE, 42(4), 1027–1036. https://doi.org/10.13031/2013.13250
Sudarsan, B., Ji, W., Biswas, A., & Adamchuk, V. (2016). Microscope-based computer vision to characterize soil texture and soil organic matter. Biosystems Engineering, 152, 41–50. https://doi.org/10.1016/j.biosystemseng.2016.06.006
Taneja, P., Vasava, H. K., Daggupati, P., & Biswas, A. (2021). Multi-algorithm comparison to predict soil organic matter and soil moisture content from cell phone images. Geoderma, 385(December 2020), 114863. https://doi.org/10.1016/j.geoderma.2020.114863
Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., & Jørgensen, R. N. (2018). Weed Growth Stage Estimator Using Deep Convolutional Neural Networks. Sensors, 18(5), 1–13. https://doi.org/10.3390/S18051580
Teimouri, N., Omid, M., Mollazade, K., & Rajabipour, A. (2014). A novel artificial neural networks assisted segmentation algorithm for discriminating almond nut and shell from background and shadow. Computers and Electronics in Agriculture, 105, 34–43. https://doi.org/10.1016/J.COMPAG.2014.04.008
Tesař, L., Shimizu, A., Smutek, D., Kobatake, H., & Nawano, S. (2008). Medical image analysis of 3D CT images based on extension of Haralick texture features. Computerized Medical Imaging and Graphics, 32(6), 513–520. https://doi.org/10.1016/J.COMPMEDIMAG.2008.05.005
Trout, T. J. (1992). Furrow Flow Velocity Effect on Hydraulic Roughness. Journal of Irrigation and Drainage Engineering, 118(6), 981–987. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:6(981)
Walker, W. R. (2003). SIRMOD III Surface Irrigation Simulation , Evaluation and Design Guide and Technical Documentation. Utah State University.
Walker, W. R., & Skogerboe, G. V. (1987). surface irrigation theory and practice (1st ed.). prentice-hall. https://hdl.handle.net/10568/36729
Webel, J., Gola, J., Britz, D., & Mücklich, F. (2018). A new analysis approach based on Haralick texture features for the characterization of microstructure on the example of low-alloy steels. Materials Characterization, 144, 584–596. https://doi.org/10.1016/J.MATCHAR.2018.08.009
Zarakani, K., Remazani Etedali, H., & Daneshkar Arasteh, P. (2020). Estimation of infiltaration parameters and Manning roughness coefficient under two continuous and cutback flows regims Keyvan. Journal of Water and Soil Resources Conservation, 9(2).
 
Persian References:
Abbasi, F. (2012). Principles of flow in surface irrigation. National Committee on Irrigation and Drainage of Iran, 232 pages. (in Persian)
Abbasi, F., & Ebrahimian, H. (2023). Hydraulics of surface irrigation. Academic Publishing Center, 1st edition, 368 pages. (in Persian)
Ramezani Etedali, H., Liaghat, A., & Abbasi, F. (2009). Evaluation of the Evalue model for estimating Manning’s roughness coefficient in furrow irrigation. Journal of Agricultural Engineering Research, 10(3), 83–94. (in Persian)
Timouri, N. (2018). Design, construct, and evaluate an intelligent system for online grading poultry parts using 3D vision technology. University of Tehran. (in Persian)
Vardinejad, V., Ahmadi, H., Hemmati, M., & Ebrahimian, H. (2016). Evaluation and comparison of different methods for estimating infiltration parameters in various furrow irrigation systems and inflow regimes. Journal of Water and Soil Science, 20(76), 161–176. (in Persian)