تأثیر وضوح مدل رقومی ارتفاع بر روی پهنه سیلاب (مطالعه موردی: رودخانه کارون)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب-دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

3 گروه مهندسی طبیعت، دانشکده کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، خوزستان، ایران

4 رئیس گروه نوآوری و توسعه فناوری- سازمان آب و برق خوزستان، خوزستان، ایران

چکیده

یکی از مهم‌ترین بخش‌های مدل‌سازی سیلاب، مدل رقومی ارتفاع بستر رودخانه و دشت‌های سیلابی آن است. باتوجه‌به اینکه در بسیاری از مناطق کشور، نقشه‌های توپوگرافی با دقت بالا در دسترس نیست، در این تحقیق سعی شده است تا تأثیر کیفیت نقشه توپوگرافی بستر رودخانه کارون و محدوده‌های اطراف آن در بازه ملاثانی تا فارسیات بر روی مدل‌سازی پهنه سیلاب مورد بررسی قرار گیرد. محدوده طرح حدود 110 کیلومتر از رودخانه کارون است که شامل سه ایستگاه آب‌سنجی ملاثانی، اهواز و فارسیات می‌باشد. برای مدل‌سازی دوبعدی در محیط HEC-RAS در دسترس بودن نقشه ارتفاعی منطقه موردمطالعه لازم است. بدین منظور نقشه ارتفاعی محدوده‌های اطراف رودخانه کارون با دقت‌های مختلف از طریق داده‌های نقشه‌‌های توپوگرافی موجود و تصاویر ماهواره‌ای تهیه  گردید. به دلیل در دسترس نبودن نقشه ارتفاعی از بستر رودخانه کارون، بستر رودخانه در محیط GIS ساخته شد. در این مطالعه جهت بررسی کیفیت نقشه توپوگرافی بر روی پهنه سیلاب از نقشه‌هایی با دقت 30، 50، 100 و 150 متر استفاده شده است. جهت بررسی تأثیر نقشه‌های توپوگرافی با رزولوشن‌های مختلف بر پهنه‌بندی سیلاب نیز از عکس‌های ماهواره Sentinel-2 به همراه 12 شاخص کمی استفاده شده است. نتایج تحلیل‌ها نشان می‌دهد که امتیاز تهدید از 67 درصد به‌ازای رزولوشن 30 متری به 66، 59 و 56 درصد به‌ازای رزولوشن‌های 50، 100 و 150 متری رسیده است که نشان‌دهنده کاهش 11 درصدی به‌ازای کاهش 5 برابری رزولوشن نقشه توپوگرافی بوده است. نتایج معیارهای کمی مختلف نشان می‌دهند که اندازه پیکسل‌های میانه (5۰×5۰ یا 10۰×5۰ متر) می‌توانند دقت معقولی را با کاهش محاسبات فراهم کنند. این نسبت به‌ویژه برای مطالعات در مقیاس منطقه‌ای یا تجزیه‌وتحلیل‌های فرامنطقه‌ای مفید است. به‌طورکلی، یافته‌ها بر اهمیت استفاده از وضوح مدل رقومی متناسب با اهداف و محدودیت‌های موجود در مدل‌سازی سیلاب تأکید دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Investigation of DEM Resolution Influence on Flood Inundation (Case study: Karun River)

نویسندگان [English]

  • Javad Zahiri 1
  • ahmad jafari 2
  • Mitra Cheraghi 3
  • Mohamad-Javad Nasr-Esfahani 4
1 Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
2 Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
3 Department of Nature Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Iran
4 Head of Innovation and Technology Development - Khuzestan Water and Power Organization, Khuzestan, Iran
چکیده [English]

One of the fundamental aspects of flood modeling is the digital elevation model (DEM) of the riverbed and its floodplains. Given that high-accuracy digital elevation maps (DEMs) are not available in many regions of the country, this study seeks to examine the impact of DEM quality of the Karun Riverbed and its floodplains, specifically from the Molasani to Farsiat stations, on flood inundation mapping. The study area encompasses approximately 110 kilometers of the Karun River, including three hydrometric stations: Molasani, Ahvaz, and Farsiat. For two-dimensional modeling in the HEC-RAS environment, the availability of an elevation map of the study area is essential. To this end, elevation maps of the Karun River were prepared with varying accuracies using methods such as existing survey data and aerial imagery. Due to the unavailability of riverbed elevation maps, riverbed reconstruction was conducted in a GIS environment. In this study, to evaluate the quality of DEMs on flood mapping, maps with resolutions of 30, 50, 100, and 150 meters were utilized. For analyzing different scenarios, Sentinel-2 satellite images, along with 12 quantitative indices, were employed. The analysis results show that the Threat Score (TS) decreased from 67% for 30-meter resolution to 66%, 59%, and 56% for 50 m, 100 m, and 150 m resolutions, respectively, indicating an 11% reduction in accuracy with a fivefold decrease in map resolution. The results of various quantitative criteria indicate that intermediate pixel sizes (50×50 or 100×50 meters) can provide reasonable accuracy while reducing computational efforts. This is particularly useful for regional-scale studies or trans-regional analyses. Overall, the findings emphasize the importance of adjusting pixel resolution in accordance with the specific objectives and constraints of flood modeling tasks.

کلیدواژه‌ها [English]

  • Digital elevation map
  • (DEM)
  • Flood
  • HEC-RAS
  • Threat Score

Introduction

Effective flood management requires flood mapping, estimating potential damages and risks in flood-prone areas, and designing a comprehensive plan to mitigate flood risks. Understanding the phenomena and the impacts of changes on flow conditions, as well as predicting hydraulic events in rivers, plays a significant role in minimizing damages and losses. Modern methodologies leverage techniques such as remote sensing, geographic information systems (GIS), and hydraulic and hydrological models to simulate river flows. Given the lack of high-accuracy topographic maps in many areas of the country, this study aims to investigate the impact of the quality of topographic maps for the Karun River basin, including the riverbed and floodplains areas from Molasani to Farsiat, on flood inundation mapping.

Materials and Methods

The study area covers approximately 110 km of the Karun River, including three hydrometric stations: Molasani, Ahvaz, and Farsiat. For two-dimensional modeling in the HEC-RAS environment, a digital elevation map (DEM) of the study area is essential. Therefore, DEMs of the Karun River with varying resolutions were prepared using existing survey data and aerial imagery. In aerial maps, riverbed elevation is represented as the water surface elevation. Due to the unavailability of a detailed elevation map for the Karun Riverbed, the riverbed was constructed in the GIS environment based on existing cross sections. For evaluating the impact of topographic map quality on floodplain mapping, maps with resolutions of 30 m, 50 m, 100 m, and 150 m were used. Subsequently, flood inundation map was generated using HEC-RAS model based on the different DEMs. To investigate the efficiency of the different DEMs with varying resolutions, Sentinel-2 satellite imagery and 12 quantitative metrics were employed. These metrics include Proportion Correct (PC), Threat Score (TS), Odds Ratio (θ), Bias, False Alarm Ratio (FAR), Hit Rate (H), False Alarm Rate (F), Extremal Dependence Index (EDI), Heidke Skill Score (HSS), Pierce Skill Score (PSS), Success Ratio, and Odds Ratio Skill Score (ORSS).

Results

Analysis of the performance of 16 scenarios modeled in HEC-RAS with varying pixel resolutions for the river and floodplain, focusing on the PC metric, showed that models with smaller river pixel sizes (30 m and 50 m) consistently achieved the highest PC values. For 30 m pixels, the PC was approximately 0.799, while for 50 m pixels, it was slightly lower (ranging between 0.785 and 0.791). Examination of the TS metric, which is suitable for rare event prediction, revealed that models with the highest river pixel resolution (30 m) consistently achieved the highest TS values (approximately 0.67) across all floodplain pixel sizes, indicating strong performance. Additionally, higher-resolution river pixels consistently yielded the highest Odds Ratios (θ), reflecting high prediction reliability. For 30 m river pixels, θ started at 17.69 for 30 m floodplain pixels and slightly decreased to 17.51 for 150 m floodplain pixels. Increasing river pixel size from 30 m to 150 m led to a consistent rise in Bias, indicating over-prediction tendencies in larger pixel sizes. FAR also increased significantly with larger river pixels, signifying more false alarms. For smaller river and floodplain pixels, FAR remained relatively low, ranging from 0.25 to 0.29, indicating fewer false alarms at higher resolutions. The ORSS analysis showed that smaller pixel sizes for both river and floodplain consistently yielded higher ORSS values, demonstrating superior skill.

Conclusion

Based on the main effect analysis of river pixel size, PC and TS scores decreased as river pixel size increased, particularly for floodplain pixel sizes of 100 m and 150 m. The Heidke, Pierce, and Gilbert skill scores also decreased with larger river pixel sizes, with Gilbert’s score showing a steep decline for larger river pixels, reflecting weak flood prediction performance at lower resolutions. Bias increased with larger river pixel sizes, indicating a tendency for over-prediction. FAR followed a similar rising trend. Regarding the main effect of floodplain pixel size, PC and TS scores declined as floodplain pixel size increased, particularly for river pixel sizes of 100 m and 150 m. The drop in TS suggests that lower floodplain resolution reduces the model’s ability to accurately predict floods. All skill scores decreased with larger floodplain pixel sizes, especially in scenarios with 100 m and 150 m river pixels. Increased floodplain pixel sizes also resulted in higher Bias, indicating a greater tendency for over-prediction in lower floodplain resolutions.

Author Contributions

Conceptualization, Methodology, Formal analysis, Writing Original Draft, J.Z.; Methodology, Writing - Review & Editing, A.J.; Software, Writing - Review & Editing, M.Ch. and MJ.N. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the Agricultural Sciences and Natural Resources University of Khuzestan [Grant number:1/411/1078].

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Brunner, G. W. (2023). HEC-RAS River Analysis System: Hydraulic Reference Manual, Version 6.4. US Army Corps of Engineers–Hydrologic Engineering Center, CPD-69.
Cook, A., & Merwade, V. (2009). Effect of topographic data, geometric configuration and modeling approach on flood inundation mapping. Journal of Hydrology, 377(1–2), 131–142. https://doi.org/10.1016/J.JHYDROL.2009.08.015.
Ebert, E. E., & McBride, J. L. (2000). Verification of precipitation in weather systems: determination of systematic errors. Journal of Hydrology, 239(1–4), 179–202. https://doi.org/ch4m9p.
Ferro, C. A. T., & Stephenson, D. B. (2011). Extremal Dependence Indices: Improved Verification Measures for Deterministic Forecasts of Rare Binary Events. Weather and Forecasting, 26(5), 699–713. https://doi.org/10.1175/WAF-D-10-05030.1.
Haces-Garcia, F., Ross, N., Glennie, C. L., Rifai, H. S., Hoskere, V., & Ekhtari, N. (2024). Rapid 2D hydrodynamic flood modeling using deep learning surrogates. Journal of Hydrology, 132561. https://doi.org/10.1016/J.JHYDROL.2024.132561.
Horritt, M. S., & Bates, P. D. (2001). Effects of spatial resolution on a raster-based model of flood flow. Journal of Hydrology, 253(1), 239–249. https://doi.org/10.1016/S0022-1694(01)00490-5.
Hsu, Y. C., Prinsen, G., Bouaziz, L., Lin, Y. J., & Dahm, R. (2016). An Investigation of DEM Resolution Influence on Flood Inundation Simulation. Procedia Engineering, 154, 826–834. https://doi.org/10.1016/J.PROENG.2016.07.435.
Kashefipour, S. M., & Zahiri, J. (2010). Comparison of Empirical Equations’ Application in the Advection-Dispersion Equation  on Sediment Transport Modelling. World Appl. Sci.11(8), 1015-1024.
Lai, R., Wang, M., Yang, M., & Zhang, C. (2018). Method based on the Laplace equations to reconstruct the river terrain for two-dimensional hydrodynamic numerical modeling. Computers & Geosciences, 111, 26–38. https://doi.org/10.1016/J.CAGEO.2017.10.006.
Merkuryeva, G., Merkuryev, Y., Sokolov, B. v., Potryasaev, S., Zelentsov, V. A., & Lektauers, A. (2015). Advanced river flood monitoring, modelling and forecasting. Journal of Computational Science, 10, 77–85. https://doi.org/10.1016/J.JOCS.2014.10.004.
Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596. https://doi.org/10.1016/j.jhydrol.2021.126088.
Ogania, J. L., Puno, G. R., Alivio, M. B. T., & Taylaran, J. M. G. (2019). Effect of digital elevation model’s resolution in producing flood hazard maps. Global Journal of Environmental Science and Management, 5(1), 95–106. https://doi.org/10.22034/GJESM.2019.01.08.
Papaioannou, G., Loukas, A., Vasiliades, L., & Aronica, G. T. (2016). Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Natural Hazards, 83(1), 117–132. https://doi.org/10.1007/S11069-016-2382-1/METRICS.
Parizi, E., Khojeh, S., Hosseini, S. M., & Moghadam, Y. J. (2022). Application of Unmanned Aerial Vehicle DEM in flood modeling and comparison with global DEMs: Case study of Atrak River Basin, Iran. Journal of Environmental Management, 317, 115492. https://doi.org/10.1016/J.JENVMAN.2022.115492.
Peña, F., & Nardi, F. (2018). Floodplain Terrain Analysis for Coarse Resolution 2D Flood Modeling. Hydrology 2018, Vol. 5, Page 52, 5(4), 52. https://doi.org/10.3390/HYDROLOGY5040052.
Pennelly, C., Reuter, G., & Flesch, T. (2014). Verification of the WRF model for simulating heavy precipitation in Alberta. Atmospheric Research, 135–136, 172–192. https://doi.org/10.1016/J.ATMOSRES.2013.09.004.
Roux, H., Amengual, A., Romero, R., Bladé, E., & Sanz-Ramos, M. (2020). Evaluation of two hydrometeorological ensemble strategies for flash-flood forecasting over a catchment of the eastern Pyrenees. Natural Hazards and Earth System Sciences, 20(2), 425–450. https://doi.org/10.5194/NHESS-20-425-2020.
Samadi, A., Jafarzadegan, K., & Moradkhani, H. (2025). DEM-based pluvial flood inundation modeling at a metropolitan scale. Environmental Modelling & Software, 183, 106226. https://doi.org/10.1016/J.ENVSOFT.2024.106226.
Stephenson, D. B. (2000). Use of the “odds ratio” for diagnosing forecast skill. Weather and Forecasting, 15(2), 221-232. https://doi.org/10.1175/1520-0434(2000)015%3C0221:UOTORF%3E2.0.CO;2.
Wilks D. (2019). Statistical methods in the atmospheric sciences. Elsevier. https://cir.nii.ac.jp/crid/1370853567635628434.
Zahiri, J., & Ashnavar, M. (2019). Two-dimensional hydraulic modeling of Karun river. JWSS-Isfahan University of Technology23(4), 331-344. (In Persian).
Zahiri, J., & Ashnavar, M. (2021). River Flow Simulation by Integrating Numerical Methods and Satellite Images. Journal of Civil and Environmental Engineering, 51.2(103), 63–72. https://doi.org/10.22034/jcee.2019.9090. (In Persian).
Zeleňáková, M., Fijko, R., Labant, S., Weiss, E., Markovič, G., & Weiss, R. (2019). Flood risk modelling of the Slatvinec stream in Kružlov village, Slovakia. Journal of Cleaner Production, 212, 109–118. https://doi.org/10.1016/J.JCLEPRO.2018.12.008.