مقایسه عملکرد و اجزا عملکرد گندم رقم سیروان در خاک‌های شنی اصلاح‌شده و اصلاح‌نشده در شرایط گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران

3 گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

4 پژوهشگر ارشد مرکز تحقیقات حفاظت خاک و آب کوهین، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران،

چکیده

علیرغم نقش محوری گندم در تغذیه و اقتصاد جوامع کشت گندم در حال حاضر با چالش­های جدی مانند تغییر اقلیمی و کمبود آب مواجه است. در این پژوهش اثرات رس بنتونیت (25/6 و 5/12 g kg-1) ، کربوکسی­متیل­سلولز ( 3 و 5 g kg-1) و مخلوط دو جدایه از باکتری­های اندوفیت Pantoea agglomerans (R11) و رایزوشیت Pseudomonas sp (E1)، (10 و 20 mL. kg-1) برای اصلاح خصوصیات خاک بر روی رشد، عملکرد و اجزاء عملکرد گندم رقم سیروان در شرایط گلخانه­ای و در قالب طرح آماری کاملا تصادفی مورد بررسی قرار گرفت. ابتدا تیمارهای موثر بر خصوصیات خاک در طی دوره انکوباسیون شناسایی شدند و 5 تیمار ترکیبی منتخب شامل B6.25C5M20؛ B12.5C5M10؛ B12.5C5M20؛ B12.5C3M20 وB12.5C3M10 به همراه نمونه شاهد مثبت و منفی در مجموع 7 تیمار با 3 تکرار و 21 گلدان تهیه شد. در هر گلدان تعداد 5 بذر گندم کاشته شد و خصوصیات مورفومتری و عملکرد گندم اندازه­گیری شدند. نتایج نشان داد تیمار B12.5C5M20 بیشترین اثر را بر عملکرد گندم و اجزاء عملکرد دارد. به طوری­که باعث افزایش معنی­دار طول خوشه (33/5 -33/7(cm  طول ریشه ( cm 13/2- 67/9)، تعداد گلچه (66/10- 3/15 عدد)، تعداد دانه در سنبله (33/8-67/20 عدد)، وزن هزار دانه (g 26/10- 13/25)، عملکرد بیولوژیک (g 39/2- 28/6)، عملکرد دانه (g 47/0- 43/2) نسبت به تیمار شاهد شد، ارتفاع گیاه و شاخص برداشت با وجود افزایش نسبت به گیاه شاهد تفاوت معنی­داری نشان ندادند. اصلاح خاک شنی با تیمارهای به کار رفته راهکاری مفید برای تولید گندم در این اراضی می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of yield and yield components of Sirvan wheat cultivar in amended and un-amended sandy soils under greenhouse conditions

نویسندگان [English]

  • Seyed Mohammad Hoseini Badashiani 1
  • Ahmad Heidari 2
  • َAlireza Raheb 2
  • Hassan Etesami 1
  • Mohammad REza Bihamta 3
  • Khodabakhsh Goodarzvand Chegini 4
1 . Department of Soil Science, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
2 Soil Science Departmen, Faculty of Agriculture, University of Tehran, Karaj, Iran
3 Department, of Agronomy College of Agriculture and Natural Resources, University of Tehran, Karaj, P.O.Box 4111, Iran
4 Kohin Soil and Water Conservation Research Center, Faculty of Agriculture, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Wheat, a staple food crop wheat in nutrition and economy of the societies, is currently facing significant challenges due to climate change and water scarcity. This study investigates the effects of bentonite clay (6.25 and 12.5 g kg-1), carboxymethylcellulose (3 and 5 g kg-1), and mixture of two isolates of endophytic bacteria (Pseudomonas sp) and rhizosheath (Pantoea agglomerans) (10 and 20 mL kg-1), on soil properties, growth, yield, and yield components of the ‘Sirvan’ wheat cultivar under greenhouse conditions in a completely randomized design. the effective treatments on soil properties were identified during an incubation period. Five selected combined treatments, including B6.25C5M20; B12.5C5M10; B12.5C5M20; B12.5C3M20, and B12.5C3M10, along with positive and negative controls, were prepared in a total of 7 treatments with 3 replications and 21 pots. Five wheat seeds were sown in each pot, and morphological traits and yield were measured. Results showed that the treatment B12.5C5M20 had the greatest impact on wheat yield and yield components, significantly increasing spike length (5.33-7.33 cm), root length (2.13-9.67 cm), number of spikelets (10.66-15.3), number of grains per spike (8.33-20.67), thousand-grain weight (10.26-25.13 g), biological yield (2.39-6.28 g), and grain yield (0.47-2.43 g) compared to the control. plant height and harvest index, although increased compared to the control, did not show significant differences. Amending sandy soil with the applied treatments is a promising approach for wheat production in these lands.

کلیدواژه‌ها [English]

  • Soil Amendment
  • Sirvan
  • Increasing wheat production

Background:

 The increasing global population and the concomitant demand for greater food production, combined with the scarcity of arable land, have underscored the imperative to enhance agricultural productivity. Wheat (Triticum aestivum L.) is a staple cereal for global food security, serving as a primary food source for both humans and livestock across the globe. The growth and yield of wheat are significantly influenced by effective agricultural management, particularly soil fertility management. Considering the widespread distribution of sandy soils worldwide, tapping into their productive capacity presents a promising avenue to address global food shortages. Despite cultivation, sandy soils often exhibit low productivity and are susceptible to soil degradation processes due to their low content of clay, silt, and organic matter, as well as poor structural properties. Water and nutrient deficiencies result in low biological activity within these soils, thereby limiting plant and microbial growth. Improving sandy soils can be challenging, especially in the context of climate change and severe droughts. Consequently, there is an urgent need to develop suitable strategies for their conservation and reclamation.

Objective

This study investigated the effects of bentonite clay (6.25 and 12.5 g kg-1), carboxymethylcellulose (3 and 5 g kg-1), and mixture of two isolates of endophytic bacteria (Pseudomonas sp) and rhizosheath (Pantoea agglomerans) (10 and 20 ml kg-1), on soil properties, growth, yield, and yield components of the ‘Sirvan’ wheat cultivar under greenhouse conditions in a completely randomized design.

Methodology

the effective treatments on soil properties were identified during an incubation period. Five selected combined treatments, including B6.25C5M20; B12.5C5M10; B12.5C5M20; B12.5C3M20, and B12.5C3M10, along with positive and negative controls, were prepared in a total of 7 treatments with 3 replications and 21 pots. Five wheat seeds were sown in each pot, and morphological traits and yield were measured.  The obtained data were analyzed using Minitab 21 software through analysis of variance (ANOVA) and Duncan test. Additionally, cluster analysis was performed to identify natural patterns in the data. Ultimately, the treatment that demonstrated the highest agricultural performance and was closest to the positive control was selected as the best treatment.

Finding

Results showed that the treatment B12.5C5M20 had the greatest impact on wheat yield and yield components, significantly increasing spike length (5.33-7.33 cm), root length (2.13-9.67 cm), number of spikelets (10.66-15.3), number of grains per spike (8.33-20.67), thousand-grain weight (10.26-25.13 g), biological yield (2.39-6.28 g), and grain yield (0.47-2.43 g) compared to the control. plant height and harvest index, although increased compared to the control, did not show significant differences.

Conclusion

The use of these soil conditioners, due to their various positive effects such as high water holding capacity, increased water use efficiency in the soil, adsorption of essential plant nutrients on their surface, and consequently increased cation exchange capacity, enhanced soil aggregate stability, increased soil porosity and reduced bulk density, increased microbial activity, increased production of plant hormones and various enzymes, and consequently increased nutrient uptake, significantly improves the physical and chemical properties of the soil. As a result, plant growth and yield are enhanced. Given the scarcity of water resources and the poor quality of sandy soils, especially in arid and semi-arid regions, the use of these conditioners for the sustainable management of water and soil resources and increasing the production capacity of low-yielding sandy soils is more vital and indispensable than ever.

Author Contributions

Conceptualization; Ahmad Heidari and Alireza Raheb; methodology, Ahmad Heidari, Alireza Raheb and Hasan Etesami; validation, Ahmad Heidari and Mohammad Reza Bihamta; formal analysis, Mohammad Hoseini Badashiani; investigation, Mohammad Hoseini Badashiani and Khodabakhsh Goodarzvand Chegini; writing—original draft preparation, Mohammad Hoseini Badashiani; writing— Ahmad Heidari; visualization, Mohammad Hoseini Badashiani; supervision Ahmad Heidari and Alireza Raheb; project administration, Ahmad Heidari; funding acquisition, Ahmad Heidari and Alireza Raheb. All authors have read and agreed to the published version of the manuscript.” All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank Soil Science Department of University of Tehran for providing equipment’s and Facilities, and Dr. Aida Bakhshi Khorramdareh, for her participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest

Abd El-Ghany, B. F., Arafa, R. A., El-Rahmany, T. A., & El-Shazly, M. M. (2010). Effect of some soil microorganisms on soil properties and wheat production under North Sinai conditions. J. Appl. Sci. Res, 6(5), 559-579.
Afzal, J., Depar, N., Arshad, M., Rao, S., Rajpar, I., & Shah, A. (2014). WHEAT RESPONSE TO ACC-DEAMINASEFLUORESCENT PSEUDOMONADS WITH VARYING PHOSPHATE SOLUBILIZING ACTIVITY ON A PHOSPHORUS DEFICIENT SOIL. JAPS: Journal of Animal & Plant Sciences, 24(6).
Aleem, M., Hanna, N., & Sabry, S. (2000) Relationship between wheat root characteristics and grain yield in sandy and clay soils.
Alghamdi, A. G., Majrashi, M. A., & Ibrahim, H. M. (2023). Improving the Physical Properties and Water Retention of Sandy Soils by the Synergistic Utilization of Natural Clay Deposits and Wheat Straw. Sustainability, 16(1), 46.
Babla, M., Katwal, U., Yong, M.-T., Jahandari, S., Rahme, M., Chen, Z.-H., & Tao, Z. (2022). Value-added products as soil conditioners for sustainable agriculture. Resources, conservation and recycling, 178, 106079.
Bednik, M., Medyńska-Juraszek, A., Dudek, M., Kloc, S., Kręt, A., Łabaz, B., & Waroszewski, J. (2020). Wheat straw biochar and NPK fertilization efficiency in sandy soil reclamation. Agronomy, 10(4), 496.
Bell, R., & Seng, V. (2007). The management of agroecosystems associated with sandy soils. Management of tropical sandy soils for sustainable development: proceedings of the International Conference on the Management of Tropical Sandy Soils, Khon Kaen, Thailand,
Blake, G. (1986). Bulk density. Methods of Soil Analysis. Part, 1.
Bottomley, P. J., Angle, J. S., & Weaver, R. (2020). Methods of soil analysis, Part 2: Microbiological and biochemical properties (Vol. 12). John Wiley & Sons.
Cassel, D., & Nielsen, D. (1986). Field capacity and available water capacity. Methods of soil analysis: Part 1 Physical and mineralogical methods, 5, 901-926.
Danish, S., Hasnain, Z., Dawar, K., Fahad, S., Shah, A. N., Salmen, S. H., & Ansari, M. J. (2024). Enhancing maize resilience to drought stress: the synergistic impact of deashed biochar and carboxymethyl cellulose amendment. BMC Plant Biology, 24(1), 139.
Dhawi, F. (2023). How can we stabilize soil using microbial communities and mitigate desertification? Sustainability, 15(1), 863.
El-Nagar, D. A., & Sary, D. H. (2021). Synthesis and characterization of nano bentonite and its effect on some properties of sandy soils. Soil and tillage research, 208, 104872.
Farahani, M., Mirzakhani, M., & Sajedi, N. (2017). Effect of water absorbent materials on some agronomic traits and seed protein of wheat under water deficit stress. Plant Production Technology, 7(2), 27-37.
Huluka, G., & Miller, R. (2014). Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180-184.
Hussain, Z., Cheng, T., Irshad, M., Khattak, R. A., Yao, C., Song, D., & Mohiuddin, M. (2022). Bentonite clay with different nitrogen sources can effectively reduce nitrate leaching from sandy soil. Plos one, 17(12), e0278824.
Iqbal, R., Valipour, M., Ali, B., Zulfiqar, U., Aziz, U., Zaheer, M. S., Sarfraz, A., Javed, M. A., Afridi, M. S., & Ercisli, S. (2024). Maximizing wheat yield through soil quality enhancement: A combined approach with Azospirillum brasilense and bentonite. Plant Stress, 11, 100321.
Jackson, R. S. (2008). Postfermentation treatments and related topics. Wine science, 418-519.
Kemper, W., & Chepil, W. (1965). Size distribution of aggregates. Methods of soil analysis: Part 1 physical and mineralogical properties, including statistics of measurement and sampling, 9, 499-510.
Khan, N., Bano, A., & Babar, M. A. (2017). The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis, 72, 195-205.
Khan, W. U. D., Wei, X., Ali, H. H., Zulfiqar, F., Chen, J., Iqbal, R., Zaheer, M. S., Ali, B., Ghafoor, S., & Rabiya, U. E. (2022). Investigating the role of bentonite clay with different soil amendments to minimize the bioaccumulation of heavy metals in Solanum melongena L. under the irrigation of tannery wastewater. Frontiers in Plant Science, 13, 958978.
Lei, Z., Xu, S.-t., Monreal, C. M., Mclaughlin, N. B., Zhao, B.-p., Liu, J.-H., & Hao, G.-c. (2022). Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. Journal of Integrative Agriculture, 21(1), 208-221.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Methods of soil analysis: Part 3 Chemical methods, 5, 437-474.
LU, Q.-m., FENG, X., SUN, K.-j., & LIAO, Z.-w. (2005). Study on the use of polymer/bentonite composites for controlled release. Journal of Plant Nutrition and Fertilizers, 11(2), 183-186.
Malakouti, M., Moshiri, F., & Ghaibi, M. (2005). Optimum levels of nutrients in soil and some agronomic and horticultural crops. Soil and Water Research Institue. Technical Bulletin(405).
McKissock, I., Walker, E., Gilkes, R., & Carter, D. (2000). The influence of clay type on reduction of water repellency by applied clays: a review of some West Australian work. Journal of hydrology, 231, 323-332.
Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., & Liu, J. (2020). Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Scientific Reports, 10(1), 18282.
Naderi, K., Etesami, H., Alikhani, H. A., & Arani, A. M. (2022). Potential use of endophytic and rhizosheath bacteria from the desert plant Stipagrostis pennata as biostimulant against drought in wheat cultivars. Rhizosphere, 24, 100617.
Nelson, D. W., & Sommers, L. E. (1980). Total nitrogen analysis of soil and plant tissues. Journal of the Association of Official Analytical Chemists, 63(4), 770-778.
Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y., & Zhang, J. (2019). Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils. Advances in Polymer Technology, 2019(1), 6869454.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Department of Agriculture.
Pourmansour, S., Razzaghi, F., Sepaskhah, A., & Moosavi, A. A. (2019). Wheat growth and yield investigation under different levels of biochar and deficit irrigation under greenhouse conditions. Water and Irrigation Management, 9(1), 15-28.
Qin, C.-C., Abdalkarim, S. Y. H., Zhou, Y., Yu, H.-Y., & He, X. (2022). Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. Journal of Cleaner Production, 370, 133602.
Roy, T., Kumar, S., Chand, L., Kadam, D., Bihari, B., Shrimali, S., Bishnoi, R., Maurya, U., Singh, M., & Muruganandam, M. (2019). Impact of Pusa hydrogel application on yield and productivity of rainfed wheat in North West Himalayan region. Current science, 116(7), 1246-1251.
Semalulu, O., Elobu, P., Namazzi, S., Kyebogola, S., & Mubiru, D. (2017). Higher cereal and legume yields using Ca-bentonite on sandy soils in the dry eastern Uganda: increased productivity versus profitability. J. Agric. Res, 5(2), 140-147.
Shao, F., Zeng, S., Wang, Q., Tao, W., Wu, J., Su, L., Yan, H., Zhang, Y., & Lin, S. (2023). Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. Journal of Environmental Management, 331, 117305.
Sharma, P., Pandey, R., & Chauhan, N. S. (2024). Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Frontiers in Microbiology, 15, 1467082.
Shuman, L. (1985). Fractionation method for soil microelements. Soil science, 140(1), 11-22.
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. Methods of soil analysis: Part 3 Chemical methods, 5, 1201-1229.
Suzuki, S., Noble, A. D., Ruaysoongnern, S., & Chinabut, N. (2007). Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid land research and management, 21(1), 37-49.
Walkly, A., & Black, I. (1934). An examination of digestion methods for determining soil organic matter and a proposed modification of the chromic and titration. Soil science society of America journal, 37, 29-38.
Wang, Y., Gao, M., Chen, H., Chen, Y., Wang, L., & Wang, R. (2023). Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability, 15(12), 9602.
Yang, Q., Pei, X., & Fu, C. (2022). Effect of Polymer Mixtures on Physical-Chemical Properties of Sandy Soil and Plant Growth. Frontiers in Ecology and Evolution, 10, 889357.
Zaheer, M. S., Ali, H. H., Erinle, K. O., Wani, S. H., Okon, O. G., Nadeem, M. A., Nawaz, M., Bodlah, M. A., Waqas, M. M., & Iqbal, J. (2022). Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). Environmental Science and Pollution Research, 1-11.
Zaheer, M. S., Ali, H. H., Iqbal, M. A., Erinle, K. O., Javed, T., Iqbal, J., Hashmi, M. I. U., Mumtaz, M. Z., Salama, E. A., & Kalaji, H. M. (2022). Cytokinin production by Azospirillum brasilense contributes to increase in growth, yield, antioxidant, and physiological systems of wheat (Triticum aestivum L.). Frontiers in Microbiology, 13, 886041.
Zaheer, M. S., Raza, M. A. S., Saleem, M. F., Erinle, K. O., Iqbal, R., & Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Communications in Soil Science and Plant Analysis, ,2533-2531. 50(20).
Zhang, Y., Tian, X., Zhang, Q., Xie, H., Wang, B., & Feng, Y. (2022). Hydrochar-embedded carboxymethyl cellulose-g-poly (acrylic acid) hydrogel as stable soil water retention and nutrient release agent for plant growth. Journal of Bioresources and Bioproducts, 7(2), 116-127.