ارزیابی عملکرد مدل‌های یادگیری ماشین در سرریزهای نیلوفری زیگزاگی بر مبنای تحلیل ریسک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی مدیریت ساخت، گروه مهندسی عمران ، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

2 2- دانشیار گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

چکیده

 
سرریزهای نیلوفری، با تأثیرپذیری از ضریب دبی، در مدیریت جریان آب در سدها و مخازن نقش حیاتی دارند. ضریب دبی تعیین‌کننده کارایی و ریسک عملکرد آن‌ها در شرایط سیلابی است. در این راستا به کمک 80 دادة آزمایشگاهی گردآوری شده از دو مقطع ورودی سرریز نیلوفری با شکل‌های مربعی و دایروی زیگزاگی شده با تعداد چهار، هشت و دوازده عدد، از دو مدل ماشین بردار پشتیبان (SVM) و برنامه‌ریزی بیان ژن (GEP) برای شبیه‌سازی ضریب دبی استفاده شده است. تعداد زیگزاگ‌ها (n)، عدد فرود (Fr)، بار آبی نسبی (H/P) و شاخص شکل سرریز (R/D) به عنوان متغیرهای مستقل به کار گرفته شدند. شاخص‌های ارزیابی عملکرد (RMSE, MAE, R2) برای سنجش دقت خروجی مدل‌ها استفاده شدند. در بررسی مدل‌های مختلف SVM، تابع کرنل RBF با مقدار γ برابر ۱/۰ بهینه‌ترین نتایج را ارائه داد. مقادیر (RMSE, MAE, R2) در دوره‌های آموزش و آزمون برای این مدل به ترتیب (۹۲۶۲/۰، ۰۶۹۶/۰، ۰۸۴۸/۰) و (۹۸۲۰/۰، ۰۳۴۶/۰، ۰۳۹۸/۰) برای سرریز دایروی و (۹۷۰۷/۰، ۰۷۳/۰، ۰۹۰۴/۰) و (۹۳۳۴/۰، ۰۶۷۶/۰، ۰۷۸۷/۰) برای مقطع مربعی به‌دست آمد. در مدل GEP نتایج بهتری مشاهده شد، به‌گونه‌ای که مدل با سه ژن، اندازه هد 9 و 45 کروموزوم، در سرریز دایروی با شاخص‌های (۹۷۷۸/۰، ۰۳۷۵/۰، ۰۴۵۱/۰) و (۹۸۱۱/۰، ۰۳۱۵/۰، ۰۳۹۶/۰) در مراحل آموزش و آزمون بهینه‌ترین عملکرد را داشت. برای مقطع مربعی، مدل با 55 کروموزوم به ترتیب با مقادیر (۰۹۷۴۱/۰، ۰۴۹۴/۰، ۰۵۹۷/۰) و (۹۵۹۱/۰، ۰۵۰۳/۰، ۰۵۹۴/۰) در مراحل آموزش و آزمون ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Assessment of Machine Learning Algorithms for Discharge Coefficient Prediction in Labyrinth-glory weirs: A Risk Analysis Approach

نویسندگان [English]

  • hojatolah Safirzadeh 1
  • Mohammad Heidarnejad 2
  • Aslan Egdernezhad 3
1 M.Sc. Student, Department of Civil Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
2 Associate professor,, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
3 Assistant professor, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
چکیده [English]

Morning glory spillways play a critical role in water flow management in dams and reservoirs, influenced significantly by the discharge coefficient. This coefficient determines the efficiency and risk of spillway performance under flood conditions. In this study, using 80 experimental datasets collected from two morning glory spillway inlet sections with square and circular zigzag shapes (featuring 4, 8, and 12 zigzags), two machine learning models—Support Vector Machine (SVM) and Gene Expression Programming (GEP)—were applied to simulate the discharge coefficient. Independent variables included the number of zigzags (n), Froude number (Fr), relative water head (H/P), and spillway shape index (R/D). Performance metrics (RMSE, MAE, R²) were employed to evaluate the accuracy of the models. Among various SVM models, the RBF kernel with γ = 0.1 yielded the most optimal results. The training and testing phases for the circular spillway showed (RMSE, MAE, R²) values of (0.9262, 0.0696, 0.0848) and (0.9820, 0.0346, 0.0398), respectively, while for the square spillway, these values were (0.9707, 0.073, 0.0904) and (0.9334, 0.0676, 0.0787). The GEP model demonstrated superior performance, particularly for the circular spillway with three genes, a head size of 9, and 45 chromosomes, yielding (RMSE, MAE, R²) values of (0.9778, 0.0375, 0.0451) and (0.9811, 0.0315, 0.0396) in the training and testing phases, respectively. For the square section, the GEP model with 55 chromosomes achieved (RMSE, MAE, R²) values of (0.9741, 0.0494, 0.0597) and (0.9591, 0.0503, 0.0594) for training and testing, respectively.

کلیدواژه‌ها [English]

  • Computational Fluid Dynamics
  • Diverted Flow
  • Data-Driven model
  • Performance Assessment

Introduction

Project risk encompasses unforeseen events affecting time, cost, and quality. Effective management involves analysis and mitigation, crucial in engineering, particularly dam design. Karamoz et al. (2015) examined water diversion system design challenges. Maghrebi et al. (2016) assessed spillway risks for Chandir Dam. Bahadori and Karimai-Tabarestani (2019) analyzed reservoir dam height and crossing risks. Faizi et al. (2019) used FEMA and RAMCAP methods for Liro dam risk evaluation. Iqbalizadeh et al. (2023) advocated multi-level risk analysis for spillway redesign, while Rezapour and Hashempour (2017) proposed hybrid models for optimizing spillway dimensions. Lakos et al. (2020) and Frizel et al. (2020) highlighted the need for safe, economical spillways due to large dam construction and higher safety standards.

The literature review confirms extensive research in risk assessment, focusing on hydraulic and hydrological scenarios. However, the forthcoming study uniquely applies MLMs, including SVM and GEP to evaluate the Cd of the glory-labyrinth spillway. This is achieved by introducing labyrinth configurations at the inlet inlet—a novel approach not previously explored in existing studies.

Materials and Methods

 In this study, a comprehensive approach was employed to simulate the Cd of the glory-labyrinth spillway, utilizing 80 laboratory data sets collected from two distinct inlet sections featuring square and circular labyrinth configurations. These configurations varied in the number of labyrinths, specifically four, eight, and twelve. To accurately model the Cd, two advanced MLMs were implemented: SVM and GEP. The independent variables considered in the simulations included the number of labyrinth (n), Froude number (Fr), relative water load (H/P), and the weir shape index (R/D). These variables were chosen due to their critical influence on the hydraulic behavior of the weir. To assess the accuracy and reliability of the models, performance evaluation indices, namely Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²), were employed. These indices provided a quantitative measure of the models’ predictive capabilities, ensuring that the simulated results closely align with the observed data. 

Results

In the evaluation of various SVM models, the RBF kernel function with γ set to 0.1 yielded the most optimal results. The model’s performance metrics (RMSE, MAE, R²) during the training and testing phases were (0.9262, 0.0696, 0.0848) and (0.9820, 0.0346, 0.0398) for the circular spillway, and (0.9707, 0.073, 0.0904) and (0.9334, 0.0676, 0.0787) for the square section. Superior results were obtained using the GEP model, particularly with three genes, a head size of 9, and 45 chromosomes. For the circular spillway, the GEP model achieved indices of (0.9778, 0.0375, 0.0451) and (0.9811, 0.0315, 0.0396) during training and testing, respectively. In the square section, the model with 55 chromosomes showed performance values of (0.9741, 0.0494, 0.0597) and (0.9591, 0.0503, 0.0594) in the training and testing phases, respectively.

Discussion and Conclusion

The evaluation of various SVM models identified the RBF kernel function with a specific γ value as yielding the most optimal results. The model's performance was assessed for both circular and square spillways, showing strong metrics in both training and testing phases. Additionally, the GEP model, particularly with specific genetic configurations, demonstrated superior performance across different spillway geometries, in

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

Aouissi, H.A., Petrisor, A.I., Ababsa, M., Bo-stenaru-Dan, M., Tourki, M., & Bouslama, Z. (2021). Influence of Land Use on Avian Diversity in North African Urban Environments. Land, 10(4), 434. https://doi.org/10.3390/land10040434
Bahadori, K,H., & Karimaei Tabarestani, M. (2020). Determination of the Height and Overtopping failure of Reservoir Dams by Using Reliability Analysis (Case Study: Namrood Dam). Journal of Iranian Dam and Hydropower, 25(7), 1-13. (In Persian)
Borowski, P.F. (2020). New technologies and innovative solutions in the development strategies of energy enterprises. HighTech and innovation Journal, 1(2), 39-58. DOI: 10.28991/HIJ-2020-01-02-01
Ebrahimzadeh, A., Zarghami, M., & Nourani, V. (2020). Overtopping risk management by system dynamics and Monte-Carlo simulations, Hajilarchay Dam of Iran. Water and Irrigation Management, 9(2), 231-250. DOI: 10.22059/jwim.2019.290802.719 (In Persian)
Eghbalizadeh, S., Ghezelsofloo, A.A., & Alamatian, J. (2023). Rethinking the design of different parts of the free overflow system based on multi-level risk analysis (Case Study Ghezel dash). Iranian Journal of Irrigation & Drainage, 17(2), 193-205. DOI: 20.1001.1.20087942.1402.17.2.1.7 (In Persian)
Faghih, H., Kholghi, M., & Kochekzadeh, S. (2009). Evaluating and Comparing Some of the Quantitative Risk Analysis Methods to Estimate Design Flood of Dam Spillway (Case Study: Pishin Dam Spillway). Journal of Crop Production and Processing, 12(46), 463-474. DOI: 20.1001.1.22518517.1387.12.46.5.9 (In Persian)
Ferreira, C. (2001). Algorithm for solving gene expression programming: a new adaptive problem. Complex Systems, 13(2), 87-129. DOI: 10.4236/ajor.2018.82008
Feyzi, E., Naghavi, M., & Fakhraei, H. (2020). Risk Assessment of Hydroelectric Concrete Dams Using Combined FEMA and RAMCAP Method with Passive Defense Approach, Case Study: Leero Concrete Dam. Passive Defense, 11(2), 83-94. DOI:20.1001.1.20086849.1399.11.2.8.9 (In Persian)
Frizell, K.W., Renna, F.M., & Matos, J. (2013). Cavitation potential of flow on stepped spillways. Journal of Hydraulic Engineering, 139(6), 630-636. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000715
Fuladipanah, M., Majedi Asl, M., & Haghgooyi, A. (2020). Application of intelligent algorithm to model head-discharge relationship for submerged labyrinth and linear weirs. Journal of Hydraulics, 15(2), 149-164. DOI:10.30482/jhyd.2020.232388.1461 (In Persian)
Fuladipanah, M., & Majedi-Asl, M. (2022). Soft Computing Application to Amplify Discharge Coefficient Prediction in Side Rectangular Weirs. Irrigation and Water Engineering, 12(4), 213-233. DOI:10.22125/iwe.2022.150692 (In Persian)
Gaagai, A., Aouissi, H.A., Krauklis, A.E., Burlakovs, J., Athamena, A., Zekker, I., Boudoukha, A., Benaabidate, A., & Chenchouni, H. (2022). Modeling and risk analysis of dam-break flooding in a semi-arid Montane watershed: a case study of the Yabous Dam, Northeastern Algeria. Water, 14(5), 767-797. https://doi.org/10.3390/w14050767
Karamouz, M., Doroudi, S., & Moridi, A. (2016). An Optimal Design for Dimensions of Water Diversion System in Dams using and Analyzing Hydraulic Uncertainties and Hydrologic Risk. Journal of Hydraulics, 11(1), 21-34. DOI: 10.30482/jhyd.2016.41484. (In Persian)
Lerma, N., Paredes-Arquiola, J., Andreu, J., Solera, A., & Sechi, G.M. (2015). Assessment of evolutionary algorithms for optimal operating rules design in real water resource systems. Environmental Modelling and Software, 69, 425-436. https://doi.org/10.1016/j.envsoft.2014.09.024
Lucas, J., Hager, W.H., & Boes, R.M. (2013). Deflector effect on chute flow. Journal of Hydraulic Engineering, 139(4), 444-449. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000652
Maghrebi, M. , Ghezelsofloo, A., & Alimirzaei, H. (2018). Risk Assessment for Spillway Overflow Structure Components (Case Study: Chandir Dam). Journal of Water and Sustainable Development, 4(2), 41-48. DOI:10.22067/jwsd.v4i2.59241 (In Persian)
Rezapour Tabari, M.M., & Hashempour, M. (2018). Development of GWO-DSO and PSO-DSO Hybrid Models to Redesign the Optimal Dimensions of Labyrinth Spillway. Journal of Iranian Dam and Hydropower, 5(16), 48-63. DOI:10.1007/s00500-018-3292-9  (In Persian)
Pfister, M., Lucas, J., & Hager, W.H. (2011). Chute aerators: preaerated approach flow. Journal of Hydraulic Engineering, 137(11), 1452-1461. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000417
Sedighizadeh, S. (2011). A new model for economic optimization of water diversion system during dam construction using PSO algorithm. J. World Academy of Science, Engineering and Technology, 5, 2011-2020.
Sharafati, A., & Zahabiyoun, B. (2013). Analysis of Dam Overtopping by Considering Hydraulic and Hydrological Uncertainties. Journal of Hydraulics, 8(1), 1-17. DOI: 10.30482/jhyd.2014.7472 (In Persian)
Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag. New York.