بررسی امکان اصلاح خاک‌های کم‌بازده شنی با استفاده از کربوکسی‌متیل سلولز و اسید هیومیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج-ایران

3 موسسه علوم زمین، بخش علوم خاک، دانشگاه لایبنیتس هانوفر، هانوفر، آلمان

4 گروه مدیریت دولتی، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران،

چکیده

خاک‌های شنی به دلیل کمبود ماده آلی (OC)، ظرفیت تبادل کاتیونی (CEC) و نگهداشت آب، بهره‌وری کمی دارند. هدف این مطالعه، تعیین مقادیر بهینه اسید هیومیک (HA) و کربوکسی‌متیل سلولز (CMC) به‌عنوان اصلاح‌کننده‌های خاک و ارزیابی اثربخشی آن‌ها در بهبود برخی ویژگی‌های فیزیکی و شیمیایی خاک شنی بود. این تحقیق به­صورت یک طرح آزمایشی کاملاً تصادفی شامل 10 تیمار (شاهد، اسیدهیومیک در سه سطح ۱، 2 و 3 گرم بر کیلوگرم خاک در ترکیب با کربوکسی‌متیل سلولز در سه سطح 1، 2 و 5 گرم بر کیلوگرم خاک) در سه تکرار انجام شد. پس از پایان دوره خوابانیدن (3 ماه)، خصوصیات خاک شامل درصد رطوبت اشباع (SP)، جرم مخصوص ظاهری (BD)، بافت، قابلیت هدایت الکتریکی عصاره گل اشباع (ECe)، pH، OC و CEC اندازه‌گیری شدند. تجزیه واریانس نشان داد که تیمارهای HA و CMC تأثیر معنی‌دار بر CEC  (58/4 تا 31/5 سانتی مول بار بر کیلوگرم)، OC  (28/0 تا 41/0 درصد)،ECe   (33/0 تا 56/0 dSm-1)، BD  ( 31/1 تا 59/1 gcm-3) و SP  تا (66/37 28/43 درصد) داشتند. نتایج آزمایشگاهی، نتایج آماری و خوشه­بندی تیمارها نشان داد، تیمار ۲ گرم بر کیلوگرم HA به همراه ۵ گرم بر کیلوگرم CMC بیشترین تأثیر را در بهبود خاک داشت، به‌طوری‌که نسبت به خاک شاهد، کربن آلی 153 درصد، ظرفیت تبادل کاتیونی 52 درصد و رطوبت اشباع 8 درصد افزایش و جرم مخصوص ظاهری 4 درصد کاهش یافت. این نتایج کاربرد HA و CMC را به‌عنوان روشی مؤثر برای بهبود خاک‌های شنی در مناطق خشک و نیمه‌خشک پیشنهاد می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the possibility of improving lowـyielding sandy soils using carboxymethyl cellulose and humic acid

نویسندگان [English]

  • Sara Talaee Khosrowshahi 1
  • Alireza Raheb 2
  • Ahmad Heidari 1
  • Hassan Etesami 1
  • Hadis Khosravian Chatroodi 1
  • Mostafa Abdollahpour 3
  • Hamidreza Mokhtari Esfidvajani 4
1 Department of soil Science, Faculty of Agriculture, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
2 Department of soil Science, Faculty of Agriculture, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
3 Institute of Earth System Sciences, Section Soil Science, Leibniz University of Hannover, Hannover, Germany.
4 Public Administration Department, Faculty of Management and Economic, Islamic Azad University Science and Research Branch, Tehran, Iran.
چکیده [English]

Sandy soils have low productivity due to a lack of organic matter (OC), cation exchange capacity (CEC), and water retention. This study aimed to determine the optimal amounts of humic acid (HA) and carboxymethyl cellulose (CMC) as soil amendments and their effectiveness in improving some physical and chemical properties of sandy soil. A completely randomized experimental design including 10 treatments including control, HA (1, 2, and 3 gkg-1) in combination with CMC at (1, 2, and 5 gkg-1) in three replications was used. After the incubation period (3 months), soil properties including saturated moisture (SP), bulk density (BD), texture, the electrical conductivity of saturated extract (ECe), pH, OC, and CEC were measured. Variance analysis showed that HA and CMC had a significant effect on CEC (4.58-5.31 cmolckg-1), OC (0.28-0.41%), ECe (0.33-0.56 dSm-1), BD (1.31-1.59 gcm-3), and SP (37.76-43.28 %). Considering the results, statistical results, and clustering of experimental treatments, it was determined that the treatment of 2 gkg-1 humic acid combined with 5 gkg-1carboxymethyl cellulose had the most significant impact on soil improvement, such that organic carbon increased by 153%, cation exchange capacity by 52%, and saturation moisture by 8%, while bulk density decreased by 4%. These findings suggest the application of humic acid and carboxymethyl cellulose as an effective method for improving sandy soils in arid and semi-arid regions.

کلیدواژه‌ها [English]

  • Arid regions
  • superabsorbent
  • soil amendment
  • soil fertility
  • soil production capacity

Objectives 

Global food demand is expected to increase by 56% by 2050, while the area of unconstrained land is minimal, and most agricultural land is located in arid and semi-arid regions and faces constraints such as lack of water, nutrients, and organic matter reserves. The main characteristics of soils in arid and semi-arid areas are the predominance of sand, low water holding capacity, low organic matter and cation exchange capacity, and poor nutrient availability for plant growth. A substantial portion of Iran’s low-yield and desert lands (approximately 43 million hectares) consists of sandy soils with low productivity for crop production. One of the methods for improving the physical and chemical conditions of these soils is the addition of organic matter to them. The main objective of this study is to determine the optimal amounts of humic acid and carboxymethyl cellulose as soil amendments and to evaluate their effectiveness in improving some physical and chemical properties of sandy soil.

Materials and Methods

In this study, a sandy soil located on non-saline wind-blown sediments in Najmabad village, Nazarabad county, Alborz province was sampled. The soil samples were transported to the laboratory, air-dried naturally, and sieved through a 2 mm sieve. Soil treatments included humic acid at three levels (1, 2, and 3 gkg-1 soil) and CMC at three levels (1, 2, and 5 gkg-1 soil). Carboxymethyl cellulose was applied in the form of white sugar granules. The soil treatments were incubated for 12 weeks at a temperature of 25 degrees and a humidity of 80%. The study was conducted using a completely randomized design with 10 treatments and 3 replicates. The experimental data were analyzed using Minitab 16 software, applying statistical methods including Analysis of Variance (ANOVA), Tukey's test, Principal Component Analysis (PCA), and clustering. ANOVA and Tukey's test were used to identify significant differences between treatments, while PCA was employed for dimensionality reduction and pattern recognition. Clustering was utilized to group treatments based on similar characteristics.

Results

After the end of the incubation period, soil properties including saturated moisture content (SP), bulk density (BD), texture, saturated extract electrical conductivity (ECe), pH, organic carbon (OC), and cation exchange capacity (CEC) were measured. The research was conducted with a completely randomized experimental design including 10 treatments in three replications for humic acid and carboxymethyl cellulose and the experimental data were analyzed with Minitab 16 software.

Conclusion

Analysis of variance showed that in general, humic acid and carboxymethyl cellulose treatments had a significant effect on CEC (range of change 4.58 to 5.31 cmol(c)kg-1 soil), OC (range of change 0.28 to 0.41%), ECe (range of change 0.33 to 0.56 dSm-1), BD (range of change 1.31 to 1.59 gcm-3) and SP (range of change 37.66 to 43.28%). Considering the experimental data results, statistical results and clustering of experimental treatments, the application of 2 gkg-1 soil humic acid plus 5 gkg-1 soil carboxymethyl cellulose was selected as the most suitable treatment for the improvement of sandy soils in arid and semi-arid regions. This treatment effectively helped in the improvement of sandy soil by improving the physical and chemical properties of the studied sandy soil, including a sharp increase in OC (by 153%), an increase in CEC (by 52%), a decrease in BD (by 4%) and an increase in SP (by 8%).

Author Contributions

Conceptualization; Alireza Raheb and Ahmad Heidari; methodology, Alireza Raheb, Ahmad Heidari, Mostafa Abdollahpour, Hassan Etesami and Hamidreza Mokhtari Esfidvajani; validation, Alireza Raheb and Ahmad Heidari ; formal analysis, Sara Talaee Khosrowshahi and Hadis Khosravian Chatroodi; investigation, Sara Talaee Khosrowshahi; writing-original draft preparation, Sara Talaee Khosrowshahi; writing-Alireza Raheb; visualization, Sara Talaee Khosrowshahi; supervision, Alireza Raheb and Ahmad Heidari; project administration, Alireza Raheb; funding acquisition, Alireza Raheb and Ahmad Heidari. All authors have read and agreed to the published version of the manuscript.” All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

 

Acknowledgements

The authors would like to thank Soil Science Department of University of Tehran for providing equipments and Facilities, and Dr. Aida Bakhshi Khorramdareh for her participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest

Alharbi, S., Majrashi, A., Ghoneim, A. M., Ali, E. F., Modahish, A. S., Hassan, F. A., & Eissa, M. A. (2021). A new method to recycle dairy waste for the nutrition of wheat plants. Agronomy11(5), 840.
Ali, K., Wang, X., Riaz, M., Islam, B., Khan, Z. H., Shah, F., ... & Haq, S. I. U. (2019). Biochar: An eco-friendly approach to improve wheat yield and associated soil properties on sustainable basis. Pak. J. Bot54, 1255-1261.
Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil organic carbon in sandy paddy fields of Northeast Thailand: A review. Agronomy10(8), 1061.
Asghari, S., Abbasi, F., Neyshabouri, M. R., Oustsan, S., & Aliasgharzad, N. (2011). Effects of four organic soil conditioners on some hydraulic and solute transport parameters in a sandy loam soil. Journal of Water and Soil Conservation, 18(2), 177-194. (In Persian).
Blake, G., & Hartge, K. (1986). Particle density. Methods of soil analysis: Part 1 physical and mineralogical methods, 5, 377-382.
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of analysis. CRC press.
Dianat Maharluei, Z., Safarzadeh, S., & Moosavi, A. A. (2020). Effect of Two Organic Amendments on Some Soils Physical Properties with Different Texture. Applied Soil Research7(4), 137-147.
Fu, X., Wu, X., Wang, H., Chen, Y., Wang, R., & Wang, Y. (2023). Effects of fertigation with carboxymethyl cellulose potassium on water conservation, salt suppression, and maize growth in salt-affected soil. Agricultural Water Management, 287, 108436.
Hu, Y. W., Li, Q. K., Song, C. J., & Jin, X. H. (2021). Effect of humic acid combined with fertilizer on the improvement of saline-alkali land and cotton growth. Applied Ecology and Environmental Research19(2), 1279-1294.
Lei, Z. H. O. U., Xu, S. T., Monreal, C. M., Mclaughlin, N. B., Zhao, B. P., Liu, J. H., & Hao, G. C. (2022). Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. Journal of Integrative Agriculture21(1), 208-221.
Li, G., Shan, Y., Nie, W. B., Sun, Y., Su, L., Mu, W., ... & Wang, Q. (2024). Effects of Carboxymethyl Cellulose Sodium (Cmc) on Hydraulic Properties, Water-Salt Distribution and Crop Growth in a Maize‒Wheat Cropping System (Mwcs) in Coastal Saline-Alkali Soil. Water-Salt Distribution and Crop Growth in a Maize‒Wheat Cropping System (Mwcs) in Coastal Saline-Alkali Soil.
Li, Z., Qi, X., Fan, X., Wu, H., Du, Z., Li, P., & Lü, M. (2015). Influences of biochars on growth, yield, water use efficiency and root morphology of winter wheat. Transactions of the Chinese Society of Agricultural Engineering31(12), 119-124.
Ma, B., Bao, Y., Ma, B., McLaughlin, N. B., Li, M., & Liu, J. (2022). Residual Effect of Bentonite-Humic Acid Amendment on Soil Health and Crop Performance 4–5 Years after Initial Application in a Dryland Ecosystem. Agronomy12(4), 1-16.
Ning, S., Jumai, H., Wang, Q., Zhou, B., Su, L., Shan, Y., & Zhang, J. (2019). Comparison of the effects of polyacrylamide and sodium carboxymethylcellulose application on soil water infiltration in sandy loam soils. Advances in Polymer Technology, 2019(2), 1-7.
Omer, A. M., Tamer, T. M., Hassan, M. E., Khalifa, R. E., Abd El-Monaem, E. M., Eltaweil, A. S., & Mohy Eldin, M. S. (2023). Fabrication of grafted carboxymethyl cellulose superabsorbent hydrogel for water retention and sustained release of ethephon in sandy soil. Arabian Journal for Science and Engineering, 48(1), 561-572.
Pu, S., Hou, Y., Ma, J., Zou, Y., Xu, L., Shi, Q., ... & Pei, X. (2019). Stabilization behavior and performance of loess using a novel biomass-based polymeric soil stabilizer. Environmental & Engineering Geoscience25(2), 103-114.
Qin, C. C., Abdalkarim, S. Y. H., Zhou, Y., Yu, H. Y., & He, X. (2022). Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. Journal of Cleaner Production370, 133602.
Qin, C.-C., Abdalkarim, S. Y. H., Zhou, Y., Yu, H.-Y., & He, X. (2022). Ultrahigh water-retention cellulose hydrogels as soil amendments for early seed germination under harsh conditions. Journal of Cleaner Production, 370, 133602.
Qingwen, Y., Xiangjun, P. & Cheng, F. (2022). Effect of Polymer Mixtures on Physical-Chemical Properties of Sandy Soil and Plant Growth. Frontiers in Ecology and Evolution,10 (3389), 1-14.
Rekaby, S. A., AL-Huqail, A. A., Gebreel, M., Alotaibi, S. S., & Ghoneim, A. M. (2023). Compost and humic acid mitigate the salinity stress on quinoa (Chenopodium quinoa Willd L.) and improve some sandy soil properties. Journal of Soil Science and Plant Nutrition, 1-11.
Rousta, M. J., & Enayati, K. (2019). The effects of humic acid application on yield and yield components of wheat and some chemical properties of a saline-sodic soil. Journal of Soil Management and Sustainable Production8(4), 95-109.
Shao, F., Zeng, S., Wang, Q., Tao, W., Wu, J., Su, L., ... & Lin, S. (2023). Synergistic effects of biochar and carboxymethyl cellulose sodium (CMC) applications on improving water retention and aggregate stability in desert soils. Journal of Environmental Management, 331(2), 1-15.
Shokouhi far, M., Broomand nasab, S., Soltani Mohammadi, A. and Hooshmand, A. R. (2016). The Effect of Salinity of Irrigation Water and Super Absorbent Polymer on Some Hydraulic and Physical Properties of Sandy Loam Soil. Irrigation Sciences and Engineering39(2), 101-113. (In Persian).
Smith, K., & Mullins, C. (1991). Soil analysis. Marcel Decker.
Sparks, D. L., Page, A. L., Helmke, P. A., & Loeppert, R. H. (Eds.). (2020). Methods of soil analysis, part 3: Chemical methods (Vol. 14). John Wiley & Sons.
Sumner, D. Y., & Grotzinger, J. P. (1996). Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology, 24(2), 119-122.
Wang, Y., Gao, M., Chen, H., Chen, Y., Wang, L., & Wang, R. (2023). Fertigation and carboxymethyl cellulose applications enhance water-use efficiency, improving soil available nutrients and maize yield in salt-affected soil. Sustainability, 15(12), 9602.
Wilson, A. (2012). Preliminary test results of nano-based fluids reveal benefits for field application. Journal of Petroleum Technology, 64(11), 104-108.
Wu, J., Tao, W., Wang, H., & Wang, Q. (2015). Influence of sodium carboxyl methyl cellulose on soil aggregate structureand soil water movement. Transactions of the Chinese Society of Agricultural Engineering, 31(2), 117-123.
Yekzaban, A., Moosavi, S. A. A., Sameni, A. and Rezaei, M. (2022). Effect of Particle Size, Amounts, and Sources of Biochar on Saturated Hydraulic Conductivity in Two Texturally Different Soils. Iranian Journal of Soil Research36(3), 321-334. (In Persian).
Yang, Q. W., Pei, X. J., & Huang, R. Q. (2019). Impact of polymer mixtures on the stabilization and erosion control of silty sand slope. Journal of Mountain Science, 16(2), 470-485.
Yang, Q., Pei, X., & Fu, C. (2022). Effect of Polymer Mixtures on Physical-Chemical Properties of Sandy Soil and Plant Growth. Frontiers in Ecology and Evolution, 10, 889357.
Yost, J. L., & Hartemink, A. E. (2019). Soil organic carbon in sandy soils: A review. Advances in agronomy, 158, 217-310.
Zanin, L., Tomas, N., Cesco, S., Varanini, Z., Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Front Plant Sci, 10(675),1-12.
Zhang, J., Wang, Q., Shan, Y., Guo, Y., Mu, W., Wei, K., & Sun, Y. (2022). Effect of sodium carboxymethyl cellulose on water and salt transport characteristics of saline–alkali soil in Xinjiang, China. Polymers14(14), 2884.
Zhou, L., Monreal, C. M., Xu, S., McLaughlin, N. B., Zhang, H., Hao, G., & Liu, J. (2019). Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma338, 269-280.
Zinchenko, A., Sakai, T., Morikawa, K., & Nakano, M. (2022). Efficient stabilization of soil, sand, and clay by a polymer network of biomass-derived chitosan and carboxymethyl cellulose. Journal of Environmental Chemical Engineering, 10(1), 107084.