تحلیل زمانی-مکانی و پیش‌بینی آینده تغییرات کاربری اراضی با استفاده از داده‌های چندزمانه سنجش از دور و تکنیک‌های GIS )مطالعه موردی: حوضه آبریز هیرمند(

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی منابع آب، پژوهشکده تالاب بین‌المللی هامون، پژوهشگاه زابل.

2 گروه پژوهشی اکوسیستم های طبیعی، پژوهشکده تالاب بین‌المللی هامون، پژوهشگاه زابل

10.22059/ijswr.2025.386623.669848

چکیده

هدف این مطالعه، تحلیل و کمّی‌سازی الگوی تغییرات کاربری اراضی حوضه آبریز فرامرزی هیرمند طی ۳۰ سال گذشته و پیش بینی آن در ۲۰ سال آینده بود. برای تهیه نقشه‌های کاربری اراضی سال‌های ۱۹۹۲،  ۲۰۰۲ و ۲۰۲۲ از تصاویر ماهواره Landsat سنجنده TM و OLI استفاده شد. الگوریتم جنگل تصادفی برای طبقه‌بندی نقشه‌ها معرفی و ۹ کلاس کاربری شناسایی شدند. دقت کلی و شاخص کاپا برای تمام نقشه‌های طبقه‌بندی‌شده به ترتیب بیش از ۸۰٪ و ۷۸/۰ بوده است. برای پیش‌بینی تغییرات، مدل CA-Markov استفاده شد. نقشه‌های کاربری ابتدا برای سال ۲۰۲۲ و پس از اعتبارسنجی برای ۲۰۳۰ و ۲۰۴۰ شبیه‌سازی شدند. نتایج آماری شاخص کاپا (۸۲/۰) که از مقایسه نقشه‌های تولید شده و شبیه‌سازی‌شده سال ۲۰۲۲ به دست آمد نشان‌دهنده توانایی بالای مدل در شبیه‌سازی تغییرات کاربری و پوشش زمین در منطقه بود. نتایج نشان داد که از ۱۹۹۲ تا ۲۰۲۲ وسعت بدنه آبی حوضه 97% کاهش یافته است (بخش بزرگ بدنه آبی موجود مربوط به تالاب بین المللی هامون است). این روند برای سال‌های ۲۰۳۰ و ۲۰۴۰ افزایشی بوده و از 05/0% در ۲۰۲۲ به 36/0% و 37/0% در ۲۰۳۰ و ۲۰۴۰ خواهد رسید.  جنگل‌‌ها 20% از مساحت خود را از دست داده و ادامه این روند در سال‌های آینده نیز محتمل است. مراتع متراکم حدود 75% از مساحت خود را تا سال ۲۰۲۲ از دست داده و انتظار می‌رود که تا سال ۲۰۴۰ حدود 34% کاهش مساحت دیگر را تجربه کند؛ این در حالی است‌که مساحت مراتع فقیر حدود ۲% افزایش خواهد یافت. در این میان، مساحت زمین‌های کشاورزی تا سال ۲۰۲۲ حدود 115%  افزایش داشته و از 72/2% به 88/5% رسیده است. افزایش ۲۰ تا ۳۰ درصدی وسعت زمین‌های کشاورزی تا سال ۲۰۴۰ محتمل است. این نتایج می‌تواند نقشی مؤثر در تدوین برنامه‌های زیست‌محیطی و راهبردهای مدیریت منابع در حوضه آبریز هیرمند داشته باشد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatio-temporal analysis and future prediction of land use changes using multitemporal remotely sensed data and GIS techniques in Hirmand River Basin

نویسندگان [English]

  • Mahboubeh Ebrahimian 1
  • Roghayeh Karami 2
1 Department of Water Resources Management. Hamoun International Wetland Research Institute, Research Institute of Zabol.
2 Department of Natural Ecosystem Management, Hamoun International Wetland Research Institute, Research Institute of Zabol
چکیده [English]

This study aimed to analyze and quantify land use/land cover changes in the transboundary Hirmand River basin over the past 30 years and to predict probable changes for next 20 years. Land cover maps of 1992, 2002, and 2022 were generated using Landsat images of TM and OLI sensors. The Random Forest algorithm was employed for classification and identification of land use classes. The overall accuracy and Kappa index for all classified maps were over 80% and 0.78, respectively. CA-Markov model was used to predict the changes using the land use maps first simulated for 2022, after validation, the future maps of 2030 and 2040 projected. The Kappa index of 0.82 indicated the model's high ability to simulate land use and cover changes in the basin. Water bodies experienced a 97% reduction from 1992 to 2022, with a significant portion of the remaining water body related to the Hamoun Wetland. This trend is expected to reverse slightly, with the water body area increasing from 0.05% in 2022 to 0.36% and 0.37% in 2030 and 2040, respectively. Forests have lost 20% of area, and this decline is likely to continue. Dense rangelands have lost approximately 75% of their areas by 2022, and it is projected that they will decline to 34% by 2040, while poor rangelands have increased by around 2%. Meanwhile, agricultural land has expanded by approximately 115% by 2022, increasing from 2.72% to 5.88%. It is anticipated that agricultural land will experience a further increase of 20–30% by 2040.

کلیدواژه‌ها [English]

  • CA-Markov model
  • Hamoun Wetland
  • Landsat satellite
  • Hirmand River basin

Introduction

Land use and land cover (LULC) changes, particularly in arid and semi-arid regions, play a critical role in sustainable development and environmental stability. Given the strategic importance of the transboundary Hirmand River Basin and the environmental crises in recent decades, such as severe droughts, dust storms, vegetation loss, and desertification, precise and up-to-date assessment of land use and land cover changes is essential as a basis for effective land management studies. This study aims to analyze and quantify the patterns of land use/land cover (LULC) changes over the past 30 years (1992–2022) and predict them for the next 20 years using the CA-Markov model.

Numerous studies have demonstrated the effectiveness of remote sensing (RS) and geographic information systems (GIS) in monitoring LULC changes. The studies highlighted the potential of RS and GIS tools to analyze and predict LULC changes effectively, providing insights into sustainable land management. Based on the search results, no study has comprehensively analyzed land use and land cover (LULC) changes across the entire Hirmand Basin using remote sensing and GIS techniques. Most research has focused on specific sub-regions, such as the Hamoun Wetlands or the impacts of climate change and human activities on the Hirmand River. This indicates a gap in the literature, highlighting the novelty of your study, which uniquely integrates satellite imagery analysis and predictive modeling to examine LULC transitions across the whole basin. This makes the contribution of the study both innovative and crucial for informed regional planning and sustainable resource management.

Methodology

This study employs Landsat satellite images of TM and OLI sensors to generate LULC maps for 1992, 2002, and 2022. The Random Forest algorithm was used for image classification, ensuring high accuracy in differentiating land cover types. Nine land use classes were identified. The overall accuracy and kappa coefficient indicated high classification accuracy. For predicting future LULC changes, the CA-Markov model was applied, integrating historical LULC data to simulate spatial and temporal dynamics. Land use maps were first generated for 2022 for validation (kappa coefficient of 0.86) and then simulated for 2030 and 2040. Additionally, Google Earth Engine facilitated data preprocessing, while ArcGIS Pro and IDRISI TerrSet supported advanced spatial analysis and visualization.

Results and Discussion

The results revealed that from 1992 to 2022, water bodies lost 97% of their area. Notably, a significant portion of the remaining water body is part of the Hamoun International Wetland. This trend is expected to slightly reverse, with the area increasing from 0.05% of the basin in 2022 to 0.36% and 0.37% in 2030 and 2040, respectively. Forests lost 20% of their area, shrinking from 0.21% in 1992 to 0.16% in 2022, and a continued decline is projected for 2030 and 2040. Dense rangelands have also experienced a sharp reduction, losing about 75% of their areas by 2022, decreasing from 4.83% to 1.18%. By 2040, an additional 34% reduction is expected. Meanwhile, agricultural land increased by approximately 115% by 2022, expanding from 2.72% to 5.88%. With ongoing policies in Afghanistan, agricultural land is expected to increase by an additional 20–30% reaching 23.93% by 2030 and 34% by 2040. It is expected that built-up areas will experience minimal growth, remaining around 0.23% by 2040 due to socioeconomic and political factors. The significant reduction in water bodies and rangelands, coupled with the expansion of agricultural land, emphasizes the complex interplay of environmental, socioeconomic, and political factors. The decline in water resources is attributed to both climatic factors (reduced precipitation and increased droughts) and human activities. Also, poor urban planning, political instability, and insufficient infrastructure have limited urban expansion.

Conclusion

This study highlights the critical changes in LULC in the Hirmand River Basin over the past 30 years and projects significant future transformations by 2040. The findings emphasize the urgent need for integrated land-use planning for sustainable land management strategies to mitigate the adverse effects of LULC changes. Without proactive management, continued degradation of rangelands and water bodies is inevitable, posing serious ecological and socio-economic risks.

Author Contributions   

M.E.: Writing original draft, Formal analysis, Conceptualization, Data curation, Methodology, Software, Validation. R.K.: Writing – review & editing.

Data Availability Statement

Not applicable

Acknowledgements

This manuscript is a part of the research project (Project code: PR-RIOZ-1401-5091-1). The authors would like to thank the Research Institute of Zabol for their support.

Ethical considerations

The study was approved by the Ethics Committee of Research Institute of Zabol. The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Abd El-Kawy, O. R., Rød, J. K., Ismail, H., & Suliman, S. (2011). Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2), 483–494. http://dx.doi.org/10.1016/j.apgeog.2010.10.012.
Aminiparsa, V., & Salehi, E. (2016).  Spatio-temporal analysis and simulation pattern of land use/cover changes, case study: Naghadeh, Iran, Journal of Urban Management, 5 (2), 43-51. https://doi.org/10.1016/j.jum.2016.11.001. (https://www.sciencedirect.com/science/article/pii/S2226585616300334)
Altman, D. G. (1990). Practical Statistics for Medical Research. Taylor & Francis.
Arabi Ali Abad, F. , Zare, M. and Ghafarian Malamiri, H. R. (2021). Land use Change Prediction using Markov Chain Compilation Model and Automated Cells (Case Study: Shirkuh). Geography and Development, 19(62), 251-270. doi: 10.22111/gdij.2021.6022. (In Persian).
Azizi Qalati, M., Rangzan, A., Kazem, A., Sadidi, A., Heidarian, M., & Taghizadeh, F. (2016). Predicting spatial land use changes using the Markov-CA model (Case study: Kouhmareh Sorkhi region, Fars province). Remote Sensing and Geographic Information System in Natural Resources, 7(1), 59-71. (In Persian).
Basheer, S., Wang, X., Farooque, A. A., Nawaz, R. A., Liu, K., Adekanmbi, T., & Liu, S. (2022). Comparison of land use land cover classifiers using different satellite imagery and machine learning techniques. Remote Sensing, 14(19), 4978.
Ebrahimzadeh, I. (2009). Analysis of the Recent Droughts and Lack of Water in Hamoon Lake on Sistan Economic Functions. Iran-Water Resources Research, 5(2), 71-76. (In Persian).
Esmaeili, H. and Negahban, S. (2021). Detection and prediction of land use/ land cover changes using Markov chain model and Cellular Automata (CA-Markov), (Case study: Darab plain). Journal of Arid Regions Geographic Studies, 12(43), 41-61. (In Persian).
Foody, G.M. (2020). Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 239, 111630 https://doi.org/10.1016/J. RSE.2019.111630.
Gemmechis, W. A. (2022). Modeling Earth Systems and Environment Land Use Land Cover Dynamics Using CA-Markov Chain Model and Geospatial Techniques: A Case of Belete Gera Regional Forest Priority Area, South Western Ethiopia. JRobot Auto Res, 3(3), 282-294.
General Directorate of Environmental Protection of Sistan and Baluchestan Province. (2015). Comprehensive Ecological Management Plan for the International Wetlands of Hamoun. Zahedan: General Directorate of Environmental Protection of Sistan and Baluchestan Province (In Persian).
Gómez-Fernández, D., López, R. S., Zabaleta-Santisteban, J. A., Medina-Medina, A. J., Gonas, M., Silva-López, J. O., ... & Rojas-Briceno, N. B. (2024). Landsat images and GIS techniques as key tools for historical analysis of landscape change and fragmentation. Ecological Informatics, 82, 102738.
Hajihosseini, M., Hajihosseini, H., Morid, S., Delavar, M., & Booij, M. J. (2020). Impacts of land use changes and climate variability on transboundary Hirmand River using SWAT. Journal of Water and Climate Change, 11(4), 1695-1711.
Haji Hoseini, M., Haji Hoseini, H., Morid, S., & Delavar, M. (2015). Assessment of the effect of land-use changes on streamflow in Helmand transboundary basin during 1990 to 2012 using remote sensed data & SWAT model. Iran-Water Resources Research, 11(1), 73-86.
Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting Land Use/Land Cover Changes Using a CA-Markov Model under Two Different Scenarios. Sustainability, 10(10), 3421. https://doi.org/10.3390/su10103421
Hashemi, Z., Soudaei Zadeh, H., Mokhtari, M. H., Hakimzadeh Ardakani, M. A., & Kamali Ali Abadi, K. (2022). Prediction and trend of land use and land cover changes using integrated Markov chain and cellular automata methods and the Land Change Modeler in Sistan Plain. Remote Sensing and Geographic Information System in Natural Resources, 15(3), 59-153. (in Persian).
Jana, A., Jat, M. K., Saxena, A., & Choudhary, M. (2022). Prediction of land use land cover changes of a river basin using the CA-Markov model. Geocarto International, 37(26), 14127–14147. https://doi.org/10.1080/10106049.2022.2086634
Khosravi, M. (2010). Spatiotemporal analysis of the sustainability of Hamoun Lakes. Iranian Water Resources Research, 6(3), 68-79. (In Persian).
Kianpoor K. K., M., Pajouhesh, M. and Emamgholizadeh, S. (2022). Evaluation of Markov Chain and Automated Cell Integrated Model in Simulation of Land Use Change and Land Cover of Gotvand Dam. Journal of Water and Sustainable Development, 9(2), 47-56. doi: 10.22067/jwsd.v9i2.2112.1106. (In Persian).
Leta, M.K.; Demissie, T.A.; Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13, 3740. https://doi.org/10.3390/su13073740
Li, X.; A. Yeh.; (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science,16(4): 323- 343. https://doi.org/10.1080/13658810210137004
Mondal, M. S., Sharma, N., Kappas, M., & Garg, P. K. (2020). CA Markov modeling of land use land cover change predictions and effect of numerical iterations, image interval (time steps) on prediction results. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 713-720.
Osman, M. A., Abdel-Rahman, E. M., Onono, J. O., Olaka, L. A., Elhag, M. M., Adan, M., & Tonnang, H. E. (2023). Mapping, intensities and future prediction of land use/land cover dynamics using google earth engine and CA-artificial neural network model. PLoS One, 18(7), e0288694.
Piri, H., & Ansari, H. (2013). Investigation of drought in Sistan plain and its impact on the Hamoun International Wetlands. Ecobiology of Wetlands, 5(15), 63-74. (In Persian).
Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land cover classification using Google Earth Engine and random forest classifier—The role of image composition. Remote Sensing, 12(15), 2411.
Roodari, A., Hrachowitz, M., Hassanpour, F., & Yaghoobzadeh, M. (2021). Signatures of human intervention–or not? Downstream intensification of hydrological drought along a large Central Asian River: the individual roles of climate variability and land use change. Hydrology and Earth System Sciences, 25(4), 1943-1967.
Selmy, S. A. H., Kucher, D. E., Mozgeris, G., Moursy, A. R. A., Jimenez-Ballesta, R., Kucher, O. D., Fadl, M. E., & Mustafa, A. -r. A. (2023). Detecting, Analyzing, and Predicting Land Use/Land Cover (LULC) Changes in Arid Regions Using Landsat Images, CA-Markov Hybrid Model, and GIS Techniques. Remote Sensing, 15(23), 5522. https://doi.org/10.3390/rs15235522
Tadese, S., Soromessa, T., & Bekele, T. (2021). Analysis of the current and future prediction of land use/land cover change using remote sensing and the CA‐Markov model in Majang forest biosphere reserves of Gambella, Southwestern Ethiopia. The scientific world journal, 2021(1), 6685045.
Thomlinson, J.R., Bolstad, P.V., Cohen, W.B. (1999). Coordinating methodologies for scaling Landcover classifications from site-specific to global: steps toward validating global map products. Remote Sens. Environ. 70 (1), 16–28. https://doi.org/ 10.1016/S0034-4257(99)00055-3.
Tesfaye, W., Elias, E., Warkineh, B., Tekalign, M., & Abebe, G. (2024). Modeling of land use and land cover changes using google earth engine and machine learning approach: implications for landscape management. Environmental Systems Research, 13(1), 31.
UNEP. (2006). History of Environmental Change in the Sistan Basin, Based on Satellite Image Analysis: 1976–2005. Post-Conflict Branch Geneva, (ITC) Netherlands.
United Nation Office on Drugs and Crime (UNODC). (2016). Afghanistan Opium Survey. Cultivation and Production, Kabul.
Wang, Q., Guan, Q., Lin, J., Luo, H., Tan, Z., & Ma, Y. (2021). Simulating land use/land cover change in an arid region with the coupling models. Ecological Indicators, 122, 107231.
Wang, Y., & Zhang, X. (2001). A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecological Modelling, 140(1–2), 141–162. http://dx.doi.org/10.1016/S0304-3800(01)00262-9.
Yang, Y., Bao, W., & Liu, Y. (2020). Scenario simulation of land system change in the Beijing-Tianjin-Hebei region. Land Use Policy, 96, 104677.
Zare, M., Teymourian, T., & Jouri, M. H. (2017). Monitoring land use/land cover changes using change intensity indices, dynamic degree, and post-classification comparison. Natural Ecosystems of Iran, 8(1), 123-136. (In Persian).
Zhang, Y., Li, Y., Lv, J., Wang, J., & Wu, Y. (2021). Scenario simulation of ecological risk based on land use/cover change–A case study of the Jinghe county, China. Ecological Indicators, 131, 108176.