شناسایی موقعیت مناطق پر مخاطره و شکاف‌های زمین ناشی از فرونشست با استفاده از برآورد مولفه مسطحاتی جابجایی و نقشه گرادیان فرونشست، مطالعه موردی: فرونشست دشت کاشان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 رئیس اداره ترازیابی دقیق و تداخل سنجی راداری، سازمان نقشه برداری کشور، تهران، ایران.

2 معاون اداره کل نقشه برداری زمینی، سازمان نقشه برداری کشور. تهران، ایران.

3 اداره کل نقشه برداری زمینی، سازمان نقشه برداری کشور. تهران، ایران.

10.22059/ijswr.2025.385160.669836

چکیده

فرونشست سطح زمین در اثر استخراج بی‌رویه منابع آب زیر‌زمینی بحرانی جهانی محسوب می‌شود که موجب خسارت اقتصادی جدی و تهدید امنیت ساکنین این مناطق می‌شود. یکی از مهم‌ترین مخاطرات فرونشست ایجاد و گسترش شکاف در سطح زمین می‌باشد. شناسایی مناطق دچار گسیختگی سطحی می‌تواند کمک قابل‌توجهی در مدیریت ریسک این مناطق و بررسی و تحکیم و بهسازی سازه‌های واقع در این مناطق داشته باشد. شکاف‌های دشت کاشان نمونه بارزی از گسیختگی‌های سطحی ناشی از برداشت بی‌رویه از منابع آب زیرزمینی و فرونشست زمین می‌باشد. ازآنجایی‌که در شکاف‌های ناشی از فرونشست زمین جابجایی مسطحاتی نیز اتفاق افتاده است، برآورد مؤلفه مسطحاتی فرونشست می‌تواند به مکان‌یابی محل ایجاد شکاف‌ها کمک کند. از دیگر سو، شکاف‌ها در مناطق دارای فرونشست نامتقارن، در اثر تغییر شیب سنگ‌بستر اتفاق میفتند. بنابراین برآورد گرادیان جابجایی قائم می‌تواند به شناسایی مکان‌های دارای تغییرات بالای نرخ جابجایی و درنتیجه محل‌های ایجاد شکاف منجر شود. در این تحقیق برای اولین بار با استفاده از میدان جابجایی اندازه‌گیری شده با تکنیک تداخل سنجی راداری، نقشه مؤلفه مسطحاتی جابجایی منطقه و نقشه گرادیان فرونشست دشت کاشان محاسبه‌شده و بر اساس این دو نقشه، مکان‌های محتمل ایجاد شکاف و گسیختگی در مناطق با جابجایی مسطحاتی بیش از یک سانتی‌متر در سال و نواحی با گرادیان فرونشست بیش از 10 درصد  شناسایی شد. همچنین بازدیدهای میدانی نشان‌دهنده تطابق محل شکاف‌های ایجادشده با مکان‌های دارای جابجایی مسطحاتی و گرادیان بالای فرونشست بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of high-risk areas and ground fissures caused by land subsidence using the estimation of horizontal displacement components and subsidence gradient maps, case study: Kashan plain subsidence

نویسندگان [English]

  • Masoome Amighpey 1
  • Siyavash Arabi 2
  • Fateme Ghoraiyan 3
1 Head of leveling and InSAR office, National cartographic center of Iran, Tehran, Iran.
2 deputy of Land surveying department, National cartographic center of Iran, Tehran, Iran.
3 Land surveying department, National cartographic center of Iran
چکیده [English]

 
Earth surface subsidence due to the over-extraction of underground water resources is considered a global crisis, which causes serious economic damage and threatens the safety of the residents of these areas. One of the most important subsidence risks is the formation and development of ground fissures. Identifying areas with surface ruptures can play a significant role in risk management and assessing, strengthening, and improving the structures located in these areas. The ground ruptures in the Kashan Plain are a clear example of surface ruptures caused by excessive extraction of underground water resources and land subsidence. Since horizontal displacements have also occurred in ruptures caused by land subsidence, estimating the horizontal component of subsidence can help locate the places where ruptures are formed. On the other hand, fissures occur in areas with asymmetric subsidence due to the change in the slope of the bedrock. Therefore, determination of the vertical displacement gradient can lead to the identification of places with high changes in the displacement rate and, as a result, the places where cracks are created. In this research, for the first time, the horizontal displacement component and the subsidence gradient map for Kashan Plain, obtained from the radar interferometry measurements. These maps are applied to identify the probable places of ruptures. Field visits have shown that the location of the ruptures is consistent with places with horizontal displacement and high subsidence gradients.

کلیدواژه‌ها [English]

  • Interferometric synthetic radar
  • earth subsidence
  • gradient of vertical displacement
  • earth surface deformation field

Introduction

Earth surface subsidence is a gradual decrease in the height of the earth's surface due to human intervention, such as over-extraction of underground water, oil and gas extraction, mining activities, or as a result of tectonic phenomena, which can have a small horizontal displacement vector. Due to the lack of sustainable management of underground water resources, various regions in the world have faced widespread subsidence. One of the most important dangers of the subsidence phenomenon is the formation and development of ground fissures. Therefore, identifying the location of these fissures caused by subsidence is considered a key issue in urban management.

In Iran, the over-extraction of underground water resources and the global consequences of climate change have caused land subsidence in many areas of the country. As an example, Kashan Plain is a prominent example of subsidence areas with numerous cracks.

In this research, the displacement field obtained from the radar interferometric technique and its gradient are applied to predict ground fissures formed due to the subsidence of the Kashan Plain and to identify areas prone to creating future fissures. This analysis can be applied to identify and reduce damage to surface and subsurface structures in subsidence areas.

Method

In this research, the ground surface displacement field in Kashan plain is determined by processing Sentinel-1 satellite radar images with GMTSAR software. Consequently, the area affected by the subsidence phenomenon in Kashan plain has been identified and evaluated. To estimate the horizontal and vertical components of the displacement caused by the subsidence in the Kashan plain, 30 Sentinel-1 radar images of the area from the ascending orbit and 30 radar images of the area from the descending orbit from December 2020 to December 2022 obtained from the European Space Center. These images are processed with GMTSAR software.

On the other hand, since the areas with asymmetric subsidence are more prone to form cracks and sinkholes and damage to the surface and subsurface structures, in order to prepare the subsidence risk map, the land subsidence gradient map in Kashan plain was calculated.

Results and Discussion

The results show the areas with maximum horizontal displacement and maximum vertical displacement gradient are matched. A field visit to the subsidence area showed the creation of wide interconnected cracks and sinkholes in the areas with maximum horizontal displacement and a displacement gradient of more than 10%.

Therefore, it can be concluded that the gradient of vertical displacement and horizontal displacement determination can provide us with a map of high-risk areas of subsidence in terms of forming cracks on the surface and structures. Therefore, it is suggested to calculate these hazard maps for all subsidence areas in order to speed up the process of reviewing and consolidating local facilities and structures.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the National cartographic center of Iran.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Amelung, F., D. Galloway, J.W. Bell, H.A. Zebker, and R.J. Laczniak, (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer system deformation. Geology, volume 27, pages 483–486.
Amighpey, M, Arabi S, Talebi A, Jamoor Y (2008). Studying subsidence area in Iran applying Precise leveling remeasurement. Surveying, 20(4):5-15, (In Persian)
Amighpey, M, Arabi, S (2016). Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements. Remote Sensing Applications: Society and Environment, 4: 1-8
Amighpey, M, Arabi S (2023). Comprehensive Iran subsidence atlas. National Cartographic Center of Iran, Tehran (In Persian)
Amighpey, M., Arabi, S. (2024). Studying Land Subsidence in Iran Caused by Groundwater Over Extraction by Preparing the Comprehensive Subsidence Map of the Country. Iran-Water Resources Research, 19(5), pp. 145-156. doi: 10.22034/iwrr.2023.186215 (In Persian)
Carpenter, MC (1999). Part I: South-Central Arizona. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States. US Geol Surv Circ 1182, pp 65–78
Conway, B. (2015). Land subsidence and earth fissures in south-central and southern Arizona, USA. Hydrogeology Journal. 24. 10.1007/s10040-015-1329-z.
Dehghani M, Valadan Zoej M J, Entezam I, Mansourian A, & Saatchi S (2009). InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophysical Journal International, 178(1): 47-56.
Fathi, M., Noorian Bidgholi, M (1400). Evaluation of land subsidence caused by water table drop in Kashan Plain. Scientific Journal of Water and Sewerage Sciences and Engineering, 6(4), pp 45-57.
Galloway, D.L., and J. Hoffmann, (2007). The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal, volume 15, pages 133–154.
Galloway, Devin & Bawden, Gerald & Leake, Stanley & Honegger, DG. (2008). Land subsidence hazards. Landslide and land subsidence hazards to pipelines. US Geol Surv Open-File Rep. 1164.
Ghazi Fard, A, Mosleh, A, Safaei, H (2012). Investigating the causes of land subsidence in the Kashan Plain and providing appropriate solutions to prevent it. Ministry of Energy, Iran Water Resources Management Joint Stock Company, Applied Research Office.
Higgins, S.A., Overeem, I., Steckler, M.S., Syvitski, J.P.M., Seeber, L. and Akhter, S.H. (2014). InSAR measurements of compaction and subsidence in the Ganges-Brahmaputra Delta, Bangladesh. Journal of Geophysical Research - Earth Surface, volume 119, pages 1768–1781, doi:10.1002/2014JF003117
Hoffmann, J., D.L. Galloway, and H.A. Zebker, (2003). Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources Research, volume 37, number 2, 1031 pages, doi:10.1029/2001WR001252
Marker, B.R. (2013). Land Subsidence. In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_208
Motagh M, Walter T R, Sharifi M A, Fielding E, Schenk A, Anderssohn J, Zschau J (2008). Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophysical Research Letters, 35(16).
Robinson GM, Peterson DE (1962). Notes on earth fissures in southern Arizona. US Geol Surv Cir 466, 7 pp
Yang, C., Lv, S.; Hou, Z., Zhang, Q., Li, T., Zhao, C. (2022). Monitoring of Land Subsidence and Ground Fissure Activity Within the Su-Xi-Chang Area Based on Time-Series InSAR. Remote Sens. 14, 903. https://doi.org/10.3390/rs14040903
Wright, T. J., B. E. Parsons, and Z. Lu (2004b). Toward mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett., 31, L01607, doi:10.1029/2003GL018827.