ارزیابی عملکرد سیستم‌های زه‌کشی با استفاده از نقشه‌برداری رقومی شوری خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

2 عضو هیئت علمی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران

3 عضو هیات علمی مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

4 مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران

10.22059/ijswr.2025.387219.669857

چکیده

به‌منظور ارزیابی عملکرد سیستم زه‌کشی در اراضی تجهیز و نوسازی شده تنورلاهور استان یزد و بر اساس روش‌ فرامکعب لاتین موقعیت 49 نقطه برای اخذ 147 نمونه خاک، 28 نمونه آب و 225 نقطه قرائت دستگاه هدایت‌گر الکترومغناطیس تعیین شد. مقادیر شوری و ترکیب یونی نمونه‌های آب و خاک در آزمایشگاه نیز برای درون‌یابی و تهیه نقشه تغییرات شوری خاک در منطقه ریشه تعیین شد. رابطه بین هدایت الکتریکی و هدایت الکترومغناطیسی قرائت شده توسط دستگاه در دو حالت افقی و عمودی با استفاده از روش‌های رگرسیون چندگانه بررسی شد. نتایج رگرسیون گام به گام نشان داد که در هر دو مورد تنها قرائت دستگاه در وضعیت افقی با میانگین شوری خاک دارای رابطه رگرسیونی معنی‌داری است. بر اساس نتایج ارزیابی شوری خاک تنها بر اساس نمونه‌گیری سنتی و تجزیه آزمایشگاهی نمی‌تواند تصویری واقعی از وضعیت شوری و عملکرد سیستم زه‌کشی ارایه نماید. در حالی‌‌که برآورد مقدار شوری خاک با استفاده از مقادیر هدایت الکتریکی ظاهری خاک، با وضعیت گیاه و عملکرد سیستم زه‌کشی رابطه بهتری نشان داد. بر این اساس، شوری خاک در قسمت‌های میانی پروژه کاملاً کنترل شده به‌نحوی که شوری خاک حتی به کمتر از شوری آب آبیاری نیز رسیده است، این در حالی است ‎که در حاشیه پروژه و جایی که وظیفه زه‌کشی بر عهده زهکش اصلی بوده، مقادیر شوری خاک زیاد است. از لحاظ شوری زهاب نیز در قسمت‌های پایاب افزایش تجمعی شوری مشاهده شد. تغییرات زمانی شوری زهاب در مقاطع مختلف شبکه زه‌کشی نشان می‌دهد که شوری زهاب در هر محل با زمان تقریباً ثابت است. شوری زهاب در جمع‌کننده‌ها (نقاط P1 و P2) در حدود 20 دسی‌زیمنس بر متر و در زه‌کش اصلی (نقطه P3) در حدود 33 دسی‌زیمنس بر متر باقی مانده است. این شرایط نشان می‌دهد که سیستم زه‌کشی به شرایط ماندگار یا شبه ماندگار نزدیک شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of drainage systems performance using digital soil salinity mapping

نویسندگان [English]

  • Farhad Dehghani 1
  • Yosef Hasheminejhad 2
  • Amir parnian 3
  • Nadia Besharat 4
1 Faculty member, National Salinity Research Center (NSRC), Agricultural Research, Education ‎and Extension ‎Organization (AREEO), Yazd, Iran
2 Faculty member, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education ‎and Extension ‎Organization (AREEO), Mashhad, Iran
3 Faculty member, ‎National Salinity Research Center (NSRC), Agricultural Research, Education and Extension ‎Organization (AREEO), Yazd, Iran
4 ‎National Salinity Research Center (NSRC), Agricultural Research, Education ‎and Extension ‎Organization (AREEO), Yazd, Iran
چکیده [English]

A Latin hypercube sampling approach was employed to evaluate the drainage system performance in rehabilitated and modernized lands in Tanour-Lahour, Yazd Province. This determined the locations for collecting 147 soil samples, 28 water samples, and 225 electromagnetic conductivity readings. Soil and water salinity and ionic composition used to interpolate and create root zone soil salinity variation maps. The regression results showed that in both cases, only the ‎device‎ measurement in the horizontal position has a significant relationship with the average root zone ‎soil ‎salinity. Accordingly, the assessment of soil salinity based only on traditional sampling and ‎laboratory ‎analysis cannot provide a proper view of the salinity and also an overview of the ‎performance of the ‎drainage system. The land’s soil salinity estimation using ‎apparent electrical ‎conductivity data showed a better relationship between the plant health status and the ‎performance of the land’s drainage system.‎ Accordingly, the soil salinity in the middle lands has been completely controlled in such a way that the ‎ECe has even reached less than the irrigation water EC, while in the ‎marginal lands equipped by ‎the drainage system and where the drainage occurred only by the main drainage ditch, the ‎soil salinity values ‎were higher than middle lands.‎ ‎The time sequence of drainage salinity indicates that ‎the ‎drainage water salinity was almost constant in time. The drainage salinity in the collectors remained constant about 20dS/m and in the main drain ditch about 33 dS/m. ‎These conditions ‎indicate that the drainage system has approached steady or quasi-steady conditions. ‎

کلیدواژه‌ها [English]

  • Drainage
  • Electromagnetic Induction
  • Evaluation
  • Pistachio
  • Salinity

Introduction:

The effective management of soil salinity in the root zone is a critical factor for sustaining agricultural productivity in irrigated lands, particularly in arid and semi-arid regions. One robust method to assess the performance of agricultural drainage systems is to analyze their impact on soil salinity control. This study focused on evaluating the performance of the rehabilitated and modernized drainage systems in the Tanour-Lahour region, Yazd Province, using advanced spatial sampling and data analysis techniques.

Materials and Methods:

A Latin hypercube sampling (LHS) strategy was employed to enhance the efficiency and representativeness of the sampling process, allowing for the systematic collection of 147 soil samples, 28 water samples, and 225 electromagnetic conductivity (EM) readings across the study area. The LHS approach ensured comprehensive spatial coverage, reducing the potential bias associated with traditional random or grid sampling methods. Laboratory analysis was conducted on soil and water samples to measure salinity content and ionic composition, providing the basis for mapping soil salinity variations within the root zone. These maps were created through geostatistical interpolation methods, offering a visual and quantitative representation of salinity distribution in the study area.

Results and Discussion:

The results of this study demonstrated the significance of combining field measurements with indirect estimation techniques for assessing soil salinity. Regression analysis using both direct and inverse modeling approaches revealed that among the various electromagnetic device measurements, only the horizontal position measurements of apparent electrical conductivity (ECa) showed a significant correlation with the average root zone salinity. This finding underscores the importance of proper sensor orientation and the need for calibration in salinity assessment studies.

Traditional methods of salinity assessment, based solely on soil sampling and laboratory analysis, were found insufficient to provide an accurate and holistic view of salinity dynamics and the drainage system's performance. In contrast, the integration of indirect measurements, such as ECa data, with laboratory analyses offered a more comprehensive understanding of salinity levels and their spatial variability. This integrated approach provided better insights into the relationship between soil salinity, plant health, and the efficiency of the drainage system.

The study revealed significant spatial variability in soil salinity across the studied fields. In the middle lands, where the drainage system was well-maintained and fully functional, soil salinity levels were effectively controlled. In fact, in some areas, the soil electrical conductivity (ECe) was observed to be lower than the salinity of the irrigation water. This highlights the efficiency of the drainage system in preventing salt accumulation and maintaining favorable conditions for crop growth.

Conversely, in the marginal lands, where drainage relied solely on main ditches and lacked an integrated network of field drains, soil salinity levels were notably higher. This discrepancy between middle and marginal lands indicates the need for targeted drainage interventions in underperforming areas to enhance salinity control and ensure uniform field conditions.

Drainage water salinity showed a cumulative increase in downstream sections of the drainage network, with salinity levels in the collectors (P1 and P2) stabilizing around 20 dS/m and in the main drainage ditch (P3) reaching approximately 33 dS/m. Temporal analysis of the drainage water salinity indicated steady or quasi-steady conditions, reflecting the drainage system's long-term operation in the region. The stability of these values over time suggests that the system has reached a dynamic equilibrium, with consistent salt removal from the soil profile.

Implications for Drainage Management and Agricultural Practices

The findings of this study underscore the critical role of drainage systems in managing soil salinity in irrigated agricultural lands. The effectiveness of these systems is closely tied to their design, maintenance, and integration with irrigation management practices. Key recommendations based on this study include the following:

Enhancing Drainage Coverage: Marginal lands with inadequate drainage networks require the extension of field drains or improvements to existing infrastructure to achieve better salinity control.

Monitoring and Calibration: Regular monitoring of soil salinity using indirect methods, such as ECa measurements, is essential for identifying problematic areas and optimizing drainage system performance. Calibrating these measurements to local soil and water conditions will improve the accuracy of salinity assessments.

Balancing Irrigation and Drainage: Efficient irrigation management, coupled with effective drainage, is crucial for minimizing salt buildup in the root zone. Adjustments in irrigation scheduling and water quality monitoring can help maintain soil salinity within acceptable limits.

Promoting Adaptive Management: Given the dynamic nature of salinity processes, adaptive management strategies that incorporate real-time monitoring data and predictive models are recommended. These strategies should focus on mitigating risks associated with soil and water salinity, especially under changing climatic and hydrological conditions.

Conclusion:

This study highlights the importance of using a combination of traditional sampling, laboratory analysis, and advanced geophysical methods to assess the performance of drainage systems in controlling soil salinity. The integration of ECa measurements with soil salinity data provided valuable insights into the spatial variability of salinity and the impact of drainage systems on soil health. The results emphasize the need for targeted drainage interventions in underperforming areas, as well as the adoption of adaptive management practices to enhance agricultural sustainability in saline environments.

By addressing the specific challenges of soil and water salinity, the findings of this research contribute to the broader goal of improving land productivity and ensuring long-term sustainability in irrigated agriculture. Future studies should explore the integration of remote sensing technologies with field measurements to further enhance the efficiency and scalability of salinity assessment and management approaches.

Author Contributions:

All authors are contributing in data collection, analysis and performing the article.

Data Availability Statement:

Raw data were generated at National Salinity Research Center (NSRC). Derived data supporting the findings of this study are available from the corresponding author Farhad Dehghani, Ph.D., on request after the permission of the NSRC.

Acknowledgements:

The authors would like to thank the Deputy of Agro-Water and Soil of the Ministry of Agriculture-Jahad for project providing funding. 

Ethical considerations:

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest:

The author declares no conflict of interest.

Ahmad, A. Y., Saleh, I. A., Balakrishnan, P., & Al-Ghouti, M. A. (2021). Comparison GIS-Based interpolation methods for mapping groundwater quality in the state of Qatar. Groundwater for Sustainable Development, 13, 100573.
Akram, S., Kashkouli, H. A., & Pazira, E. (2008). Sensitive variables controlling salinity and water table in a bio-drainage system. Irrigation and drainage systems, 22(3-4), 271-285.
Ayars, J. E., & Corwin, D. L. (2024). Salinity management. In Microirrigation for Crop Production (pp. 133-155). Elsevier Science.
Ayars, J. E., Hoffman, G. J., & Corwin, D. L. (2012). Leaching and root zone salinity control. In K. Tanji (Ed.), Agricultural Salinity Assessment and Management .Vol. 12, pp. 371-403.
Bivand R, Pebesma E, Gomez-Rubio V (2013). Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/.
Ferreira, C. S., Soares, P. R., Guilherme, R., Vitali, G., Boulet, A., Harrison, M. T., & Ferreira, A. J. (2024). Sustainable water management in horticulture: problems, premises, and promises. Horticulturae10(9), 951.
FAO. (2024). Global status of salt-affected soils–Main report. Rome.https://doi.org/10.4060/cd3044en.
Farzamian, M., Bouksila, F., Paz, A. M., Santos, F. M., Zemni, N., Slama, F., & Triantafilis, J. (2023). Landscape-scale mapping of soil salinity with multi-height electromagnetic induction and quasi-3d inversion in Saharan Oasis, Tunisia. Agricultural Water Management, 284, 108330.
Gräler B, Pebesma E, Heuvelink G .(2016). “Spatio-Temporal Interpolation using gstat.” The R Journal, 8, 204-218. https://journal.r-project.org/archive/2016/RJ-2016-014/index.html.
Hasheminejhad, Y., Homaee, M., Noroozi, A.A. (2015). Determining Proper Sampling Density and Strategy for Soil Salinity Assessment before Sampling. Journal of Soil Research. 29(3), 1282-1293. (In Persian).
Hasheminejhad, Y., Homaee, M., Noroozi, A.A. (2016). Sensitivity Analysis of Electromagnetic Induction Technique to Determine Soil Salinity in Large –Scale. Journal of Water and Soil. 30(4), 335-350. (In Persian).
Hasheminejhad, Y., Homaee, M., Noroozi, A.A. (2017). Statistical Modeling of Soil Salinity on Large Scale. Journal of Water and Soil. 31(3), 929-942. (In Persian).
Herrero, J., & Pabuayon, I. L. B. (2021). The problem with “apparent electrical conductivity” in soil electromagnetic induction studies. Advances in Agronomy, 165, 161-173.
Hijmans R. (2024). Raster: Geographic Data Analysis and Modeling. R package version 3.6-30, https://rspatial.org/raster.
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., & De Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231, 111260.
Marino, G., Zaccaria, D., Snyder, R.L., Lagos, O., Lampinen, B.D., Ferguson, L., Grattan, S.R., Little, C., Shapiro, K., Maskey, M.L. and Corwin, D.L. (2019). Actual evapotranspiration and tree performance of mature micro-irrigated pistachio orchards grown on saline-sodic soils in the San Joaquin Valley of California. Agriculture, 9(4), 76.
Mehdi-Tounsi, H., Chelli-Chaabouni, A., Mahjoub-Boujnah, D., & Boukhris, M. (2017). Long-term field response of pistachio to irrigation water salinity. Agricultural Water Management, 185, 1-12.
Mendicino, G., Akram, M., & Senatore, A. (2018). Numerical evaluation of the effects of increasing ratio of cropped to uncropped width on dry drainage efficiency in salty soils. Irrigation and Drainage, 67, 91-100.
Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388.
Mulder, V. L., Roudier, P., & Arrouays, D. (2023). Digital soil mapping-advancing the knowledge frontiers. Frontiers in Soil Science, 3, 1225672.
Noory, H., Liaghat, A. (2008). The effect of water table management on soil salinity distribution in plant rhizosphere in semi-arid climatic conditions of Iran. Journal of Agriculture, 10(1), 175-189. (In Persian)
Oosterbaan, R. (1994). Agricultural drainage criteria. In Drainage Principles and Applications. ILRI Publ .Vol. 16, pp. 635-688).
Oosterbaan, R., & Abu Senna, M. (1989). Using Saltmod to predict drainage and salinity in the Nile Delta. In ILRI Annual Report (pp. 63-75).
Oster, J. D., Quinn, N. W., Daigh, A. L., & Scudiero, E. (2022). Agricultural subsurface drainage water. In Unconventional water resources (pp. 157-195). Cham: Springer International Publishing.
Parsinejad, M., & Akram, M. (2018). A Fresh Look at Drainage for Agriculture. Irrigation and Drainage, 67, 8-16.
Pathirana, S., Lambot, S., Krishnapillai, M., Cheema, M., Smeaton, C., & Galagedara, L. (2023). Ground-penetrating radar and electromagnetic induction: Challenges and opportunities in agriculture. Remote Sensing, (11), 2932.
Petsetidi, P. A., & Kargas, G. (2023). Assessment and Mapping of Soil Salinity Using the EM38 and EM38MK2 Sensors: A Focus on the Modeling Approaches. Land, 12(10), 1932.
Rhoades, J.D. (1982). Soluble salts. In: Page AL (ed) Methods of soil analysis, part II, 2nd ed., ASA, Monograph No. 9, Madison, WI, pp 167–179. https://doi.org/10.2134/agronmonogr 9.2.2ed.c10.
Selim, T., Amer, A., Farzamian, M., Bouksila, F., Elkiki, M., & Eltarabily, M. G. (2025). Prediction of temporal and spatial soil salinity distributions using electromagnetic conductivity imaging and regional calibration. Irrigation Science, 1-19.
Shamsi, S., Kamali, A., & Hasheminejhad, Y. (2022). An approach to predict soil salinity changes in irrigated pistachio orchards (Ardakan, Yazd Province): A case study. Journal of Soil Science Society of Iran1(1), 1-10.
Sharifipour, M., Hassanoghli, A., Liaghat, A. and Naseri, A. A. (2020). Installation Depth of Subsurface Drains in Arid and Semi-Arid Regions; Challenges and Solutions. Iranian Journal of Soil and Water Research, 51(3), 737-752. doi: 10.22059/ijswr.2019.292663.668397. (In Persian)
Sharifipour, M., Alizadeh, H. A., Naseri, A., Liaghat, A. M. and Hasanoghli, A. (2015). Agricultural, Environmental and Economic Considerations in Determining Pipe Drain Depth in Arid and Semi-Arid Regions- Case Study Azadegan Plain. Water Management in Agriculture, 2(1), 71-80.Soltani, M., Rahimikhoob, A., Sotoodehnia, A., (In Persian)
Taghizadeh-Mehrjardi, R., Sarmadian, F., Omid, M., Savaghebi, G.R., Toomanian, N., Rousta, M.J., Rahimian, MH. (2013). Comparison of artificial neural network and decision tree methods for mapping soil units in Ardakan region. Iranian Journal of Soil and Water Research, 44(2), 173-182. (In Persian)
Taghizadeh-Mehrjardi, R., Sarmadian, F., Tazeh, M., Omid, M., Toomanian, N., Rousta, M.J., Rahimian, MH. (2014). Comparison of different sampling methods for digital soil mapping ‎in Ardakan region. Watershed Engineering and Management, 6(4), 353-363. (In Persian)
Visconti, F., & De Paz, J. M. (2021). A semi‐empirical model to predict the EM38 electromagnetic induction measurements of soils from basic ground properties. European Journal of Soil Science, 72(2), 720-738.
Wang, W., & Sun, J. (2024). Estimation of soil salinity using satellite-based variables and machine learning methods. Earth Science Informatics, 1-13.
Wang, F., Yang, S., Wei, Y., Shi, Q., & Ding, J. (2021). Characterizing soil salinity at multiple depth using electromagnetic induction and remote sensing data with random forests: A case study in Tarim River Basin of southern Xinjiang, China. Science of the Total Environment, 754, 142030.
Zeraatpisheh, M., Jafari, A., Bodaghabadi, M. B., Ayoubi, S., Taghizadeh-Mehrjardi, R., Toomanian, N., Xu, M. (2020). Conventional and digital soil mapping in Iran: Past, present, and future. Catena, 188, 104424.