اثر ترکیب تاج ‌پوشش گونه‌های درختچه‌ای بر شاخص‌های کیفیت خاک در غرب مازندران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتعداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران.

2 بخش تحقیقات جنگلها، مراتع و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان ایلام، ایلام، ایران.

3 گروه علوم و صنایع چوب و کاغذ، واحد کرج، دانشگاه آزاد اسلامی، کرج، ایران.

چکیده

ترکیب‌های مختلف پوشش گیاهی می‌تواند اثرات برجسته‌ای در تغییرپذیری ویژگی‌های خاک داشته باشند. بنابراین مطالعه حاضر با هدف اثر ترکیب تاج ‌پوشش گونه‌های درختچه‌ای بر شاخص‌های کیفیت خاک انجام گرفت. ویژگی‌های مختلف لاشبرگ و خاک تحت پوشش‌درختچه‌ای آمیخته با چهار گونه (سیاه‌ولیک، زرشک، گالش انگور و آلوچه‌وحشی)، سه گونه (سیاه‌ولیک، زرشک و گالش انگور)، دو گونه (سیاه‌ولیک و زرشک)، پوشش با غالبیت زرشک و پوشش با غالبیت سیاه ولیک مطالعه شد. بدین منظور در هر رویشگاه‌ سه قطعه منتخب یک هکتاری با فواصل حداقل 600 متر انتخاب و در هر قطعه منتخب، پنج نمونه و در مجموع از هر یک از رویشگاه‌ها، 15 نمونه لاشبرگ و خاک برداشت شد. نتایج حاکی از اثرات معنی‌دار ترکیب‌های مختلف پوشش گیاهی بر اکثر ویژگی‌های لاشبرگ و خاک بود. به‌طوریکه بیشترین مقدار نیتروژن لاشبرگ و بیشترین نسبت کربن به نیتروژن لاشبرگ به رویشگاه با غالبیت زرشک (46/24) تعلق داشت. بیشترین مقادیر ویژگی‌های تخلخل، پایداری خاکدانه، درصد رس، محتوای رطوبت، کربن آلی، ذخیره کربن و نیتروژن، نیتروژن، پتاسیم، کلسیم، منیزیم، شدت معدنی‌شدن خالص نیتروژن، آمونیوم، نیترات، کربن و نیتروژن ذره‌ای و آلی محلول، فعالیت آنزیم‌ها، موجودات زنده خاک، تنفس پایه و برانگیخته، زیست توده میکروبی کربن و نیتروژن و فسفر در ترکیب تاج‌ پوشش با چهار گونه مشاهده شد. نتایج تجزیه و تحلیل مؤلفه‌های اصلی (PCA) نشان داد که رویشگاه‌هایی با حاصلخیزی و فعالیت زیستی بالا متعلق به ترکیب تاج ‌پوشش با چهار گونه بود. نتایج این پژوهش حاکی از آنست که ترکیب پوشش گیاهی با چهار گونه درختچه‌ای می‌تواند باعث حفظ کیفیت خاک شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of canopy composition of shrub species on soil quality indicators in West Mazandaran

نویسندگان [English]

  • Yahya Kooch 1
  • Nahid Jafarian 2
  • Katayoun Haghverdi 3
1 Corresponding Author, Department of Range Management, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
2 Division of forests, Rangelands and Watershed, Ilam Agricultural and Natural Resources Research Center (AREEO), Ilam, Iran.
3 Department of Wood and Paper Science and Technology, Karaj Branch, Islamic Azad University, Karaj, Iran.
چکیده [English]

Different composition of vegetation can have significant effects on the variability of soil characteristics. Therefore, the present study was aimed to reveal the effect of the canopy composition of shrub species on soil quality indicators. The different characteristics was studied for the litter and the soil covered with a mix of four shrubs species (Crataegus nigra, Berberis integerrima Bunge, Ribes Uva – crispa L and Prunus spinosa L.), three species (Crataegus nigra, Berberis integerrima Bunge and Ribes Uva – crispa L.), two species (Crataegus nigra and Berberis integerrima Bunge), shrub cover with the predominance of Berberis integerrima Bunge. and Crataegus nigra. For this purpose, in each of the habitats studied, 3 sample plots of one hectare were selected with at least 600 meters distances, and in each sample plot, 5 samples of litter and soil were collected, and a total of 15 samples of litter and soil were collected from each habitat. The results showed significant effects of different Composition of vegetation on most litter and soil characteristics; so that, the highest carbon to nitrogen ratio of litter belongs to the habitat with predominance of Berberis integerrima Bunge (24.46). The highest characteristics of porosity, soil stability, clay, moisture content, carbon and organic matter, storage of carbon and nitrogen, nitrogen, potassium, calcium, magnesium, mineralization of nitrogen, ammonium, nitrate, particulate organic C and N, dissolved organic C and N, activity of enzymes, soil organisms, basic and substrate induced respiration, microbial biomass of carbon, nitrogen and phosphorus were observed in the composition of a canopy with four species. The results of principal component analysis showed that the habitats with high soil fertility and biological activity belonged to the canopy composition with four species. The results of this research indicate that the composition of vegetation with four species can maintain soil quality.

کلیدواژه‌ها [English]

  • enzyme activity litter characteristics
  • soil biological characteristics
  • soil fertility
  • shrub cover

EXTENDED ABSTRACT

 

Introduction

Different composition of vegetation can have significant effects on the variability of soil characteristics. Therefore, the present study was conducted to reveal the effect of the canopy composition of shrub species on soil quality indicators in the mountainous part of Kiakla, Nowshahr city.

Materials and Methods

In order to investigate the effects of land cover on different characteristics of organic and mineral soil layers, Parts of the mentioned areas were selected after conducting preliminary investigations and field visits. Characteristics of the litter (organic carbon, total nitrogen and carbon to nitrogen ratio) and different characteristics of the soil (physical, chemical and biological) under the cover of four mixed shrubs species (Crataegus nigra, Berberis integerrima Bunge, Ribes Uva – crispa L. and Prunus spinosa L.), three species (Crataegus nigra, Berberis integerrima Bunge and Ribes Uva – crispa L.), two species (Crataegus nigra and Berberis integerrima Bunge), shrub cover with the predominance of Berberis integerrima Bunge and Crataegus nigra was measured. For this purpose, in each of the habitats studied, 3 one-hectare plots with at least 600 meters distances were selected in each studied habitat. In each of the one-hectare plots, 5 leaf litter samples and 5 soil samples (30 cm × 30 cm by 10 cm depth) were taken to the laboratory for analysis. In total, 15 litter samples and 15 soil samples were collected from each of the habitats being studied.

Results and Discussion

The results showed significant effects of different Composition of vegetation on most litter and soil characteristics; so that, the highest carbon to nitrogen ratio of litter belongs to the habitat with predominance of Berberis integerrima Bunge (24.46). The highest characteristics of porosity, soil stability, clay, moisture content, carbon and organic matter, storage of carbon and nitrogen, nitrogen, potassium, calcium, magnesium, mineralization of nitrogen, ammonium, nitrate, Particulate organic C and N, dissolved organic C and N, activity of enzymes (urease, arylsulfatase, acid phosphatase and invertase), bacteria, fungus, Acarina, Collembola, protozoa and the number and biomass of earthworms, basic and substrate induced respiration, microbial biomass carbon, nitrogen and phosphorus were observed in the composition of the canopy with four species. The results of principal component analysis (PCA) also showed that the habitats with high soil fertility and biological activity belonged to the canopy composition with four species. The habitats with the dominance of Berberis integerrima Bunge and Crataegus nigra had lower quality and nutritional elements.

Conclusions

The results of this study indicate that the composition of different shrub canopy has a significant impact on litter quality, biological indicators, and physicochemical characteristics. Our research shows that combining vegetation with four species can maintain soil quality and improve soil quality indicators. Therefore, it is suggested that in order to restore degraded pasture lands in the studied habitats and in areas with similar environmental conditions, a composition of species should be used to protect the soil, because the composition of species can be more beneficial in determining the litter and soil quality of the region.

Author Contributions

Yahya Kooch: Conceptualization, Supervision, Project Administration, Software, Validation, Writing – Review & Editing. Nahid Jafarian: Investigation, Formal Analysis, Software, Validation, Visualization, Writing – Original Draft, Writing – Review & Editing. Katayoun Haghverdi: Methodology, Software, Validation, Writing – Review & Editing.

Data Availability Statement

Statement Data will be made available on request.

Acknowledgements

Hereby, we extend our thanks and appreciation to Tarbiat Modares University for providing the necessary facilities for conducting this research.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest. 

Adl, S. M., Acosta-Mercado, D., Anderson, T. R., & Lynn, D. H. (2006). Protozoa, supplementary material. Soil Sampling and Methods of Analysis, 2 (1): 455-470.
Ajorlo, M., Abdullah, R., Hanif, M., Husni, A., & Yusoff, M.K. )2011(. Impacts of livestock grazing on selected soil chemical properties in intensively managed pastures of Peninsular Malaysia. Pertanika J. Trop. Agric. Sci, 34, 109–121.
Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London.
Allison, L.E. (1965). Organic carbon. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 1367-1378. - doi: 10.2134/agronmonogr9.2. c39
Ambrosino, M. L., Torres, Y. A., Lucero, C. T., Lorda, G. S., Ithurrart, L. S., Martínez, J. M., Armando, L. V., Garayalde, A., & Busso, C. A. (2023). Impacts of shrubs on soil quality in the native Monte rangelands of Southwestern Buenos Aires, Argentina. Land Degradation & Development, 34(11), 3406-3417. DOI: 10.1002/ldr.4692
Anderson, T.H., & Domsch, K.H. (1990). Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem, 22, 251–255.
Asghari Sorkhi, A., Hojjati, S.M., Jalilvand, H., & Mojarabi, M. (2015). The Effect of Canopy Composition on Soil Properties in Pure and Mixed Stands of Beech (Case Study: Aland Forest -Sari). Journal of Renewable Natural Resources Research, 6(3), 1-10. (In Persian)
Bastida, F., Zsolnay, A., Hernández, T. & García, C. (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma, 147,159–171. https://doi.org/10.1016/j.geoderma.2008.08.007
Bayranvand, M., Kooch, Y., & Rey, A. (2017). Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. European Journal of Forest Research, 136, 447–456. DOI: 10.1007/s10342-017-1044-5
Bazyari, M., Etemad, V., Kooch, Y., & Shirvany, A. (2021). Soil fauna communities and microbial activities response to litter and soil properties under degraded and restored forests of Hyrcania. iForest, 14: 490-498. doi: 10.3832/ifor3583-014 [online 2021-11- 11]
Bending, G.D., Turner, M.K., Rayns, F., Marx, M.C. & Wood, M. (2004). Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biology and Biochemistry, 36,1785–1792. https://doi.org/10.1016/j.soilbio.2004.04.035
Berkelmann, D., Schneider, D., Meryandini, A. & Daniel, R. (2020). Unravelling the effects of tropical land use conversion on the soil microbiome. Environmental Microbiome, 15 (3), 178-185. DOI: 10.1186/s40793-020-0353-3
Binkley, D., & Fisher, F. (2013). Ecology and management of forest soils. 4th ed. WileyeBlackwell.
Blake, G. R., & Hartge, K. H. (1986). Particle density. In: Klute, A. (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods, 2nd ed. SSSA Book Ser. 5. ASA and SSSA, Madison, WI. 377–382.
Boudjabi, S., & Chenchouni, H. (2022). Soil fertility indicators and soil stoichiometry in semi-arid steppe rangelands. Catena, 210, 105910. https://doi.org/10.1016/j.catena.2021.105910
Bouyoucos, G.J. (1962). Hydrometer method improved for making particle size analysis of soils. Journal of Agrobiology, 56, 464-465. doi: 10.2134/agronj1962.00021962005400050028x
Bower, C. A., Reitemeier, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73: 251-261.
Bremner, J.M., & Mulvaney, C.S. (1982). Nitrogen-total. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 595-624.
Brookes, P.C., Landman, A., Pruden, G., & Jenkinson, D.S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.
Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y. & Zhang, S. (2013). Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PloS one, 8(6): 1-12. https://doi.org/10.1371/journal.pone.0067353
Cheng, M., Xiang, Y., Xue, Z., An, S., Darboux, F., (2015). Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau.China. Catena, 124, 77–84.
Cui, Y., Fang, L., Deng, L., Guo, X., Han, F., Ju, W., Wang, X., Chen, H., Tan, W. & Zhang, X. (2019). Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Sci. Total Environ, 658, 1440–1451.
Dinakaran, J. & Krishnayya, N. S. R. (2008) Variation in type of vegetal cover and heterogeneity of soil organic carbon in affecting sink capacity of tropical soils. Current Science, 94 (9), 1144-1150.
Dong Y., Chen, R., Petropoulos, E., Yu, B., Zhang, J., Lin, X., Gao, M., & Feng, Y. (2022). Interactive effects of salinity and SOM on the ecoenzymatic activities across coastal soils subjected to a saline gradient. Geoderma, 406, 115519. https://doi.org/10.1016/j.geoderma.2021.115519
Duran, J., Rodriguez, A., Palacios, J.M.F., & Gallardo, A. (2009). Changes in net Nmineralization rates and soil N and P pools in pine forest wildfire chronosequence. Biology and Fertility of Soils, 45, 781–788.
Eivazi Ney, M., Soltani Toularoud, A. A., Shahab, H., Ghavidel A., & Ghasemi, S. (2019). Determination of the most important microbial indicators as soil health index in cadmium and lead contaminated soils. Environmental Sciences Studies, 4(1), 1142-1150. (In Persian)
Elie, F., Vincenot, L., Berthe, T., Quibel, E., Zeller, B., Saint-André, L., Normand, M., Chauvat, M., & Aubert, M. (2018). Soil fauna as bioindicators of organic matter export in temperate forests. Forest Ecology and Management, 429, 549-557. doi: 10.10 16/j.foreco.2018.07.053
Fabíola Barros, M., Pinho, B. X., Leão, T., & Tabarelli, M. (2018). Soil attributes structure plant assemblages across an Atlantic forest mosaic. Journal of Plant Ecology, 11(4): 613-622. https://doi.org/10.1093/jpe/rtx037
Fouché, J., Christiansen, C. T., Lafrenière, M. J., Grogan, P., & Lamoureux, S. F. (2020). Canadian permafrost stores large pools of ammonium and optically distinct dissolved organic matter. Nature Communications, 11(1), 4500. doi: 10.1038/s41467-020-18331-w
Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., Philipson, C.D., Mikusiński, G., Andersson, E., Westerlund, B., Andrén, H., Moberg, F., & Moen, J. (2013). Bengtsson Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4, 1340. 10.1038/ncomms2328
García-Ruiz, R., Ochoa, V., Hinojosa, MB. & Carreira, JA. (2008) Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40,2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023
Ghaderi, E., & Kooch, Y. (2021). Effect of pure and mixed canopy composition of Black Hawthorn and Barberry on soil biochemical activities and microbial stoichiometry. Pasture, 15(3), 398-410. (In Persian)
Gorobtsova, O.N., Gedgafova, F.V., Uligova, T.S., & Tembotov, R.K. (2016). Eco physiological indicators of microbial biomass status in chernozem soils of the Central Caucasus (in the territory of Kabardino-Balkaria with the Terek variant of altitudinal zonation). Russian Journal of Ecology. 47, 4. 19-25. DOI: 10.1134/S1067413616010069
Handayani, IP., Coyne. MS., &Tokosh. RS. (2010). Soil organic matter fractions and aggregate distribution in response to tall fescue stands. International Journal of Soil Science 5, 1-10. doi: 10.3923/ijss.2010.1.10
Heděnec, P., Zheng, H., Siqueira, D.P, Lin, Q., Peng, Y., Kappel, I., Schmidt, T. G., Frøslev, Kjøller, R., Rousk, J., & Vesterdal, L. (2023). Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. Forest Ecology and Management, 527, 120608. https://doi.org/10.1016/j.foreco.2022.120608
Homer, C.D., & Pratt, P.F. (1961). Methods of analysis for soils, plants and waters. Agricultural Sciences Publications, University of California, Berkeley, CA, USA. 309
Hu, C., Fu, B., Liu, G., Jin, T., & Guo, L. 2010. Vegetation patterns influence on soil microbial biomass and functional diversity in a Hilly area of the Loess Plateau, China. Journal of Soils and Sediments, 10(6): 1082- 1091. DOI: 10.1007/s11368-010-0209-3
Idbella, M., Filippis, F., De Zotti, M., Sequino, G., Abd-Elgawad, A.M., Fechtali, T., Mazzoleni, S., & Bananomi, G. (2022). Specific microbiome signatures under the canopy of Mediterranean shrubs. Applied Soil Ecology, 173, 104407. DOI: 10.21203/rs.3.rs-742200/v1
Jafarian, N., Mirzaei, J., Omidipour, R., & Kooch, Y. (2024). Yahya Effects of micro-climatic conditions on soil properties along a climate gradient in oak forests, west of Iran: Emphasizing phosphatase and urease enzyme activity. Catena, 224, 106960. https://doi.org/10.1016/j.catena.2023.106960
Jimenez, J. J., Lal, R., Leblanc H. A. & Russo, R. O. (2011) Soil organic carbon pool under nativetree plantations in Caribbean lowlands of Costa Rica. Forest Ecology and Management, 241, 134–144.
Jones, D.L., & Willett, V.B. (2006). Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry. 38, 991–999. ttps://doi.org/10.1016/j.soilbio.2005.08.012
Karimiyan Bahnemiri, A., Taheri Abkenar, K., Kooch, Y., & Salehi; A. (2019b). Effect of canopy composition of tree species on soil organic and mineral properties at West Hyrcanian Forests of Iran (Case Study: Korkoroud forests in Noshahr). Forest and Wood Products, 72(1),47(56). (In Persian)
Karimiyan Bahnemiri, A., Taheri Abkenar, K., Kooch, Y., & Salehi; A. (2019a). The effect of canopy combination in over story on nutrient Contentand microbial indices of soil in Korkoroud forests of Noshahr. Iranian Journal of Forest, 11(4), 547-558. (In Persian)
Kazmierczak, M., Błońska, E., Lasota. J. (2024). Effect of litter decomposition and nutrient release from shrub litter on enzymatic activity and C/N/P stoichiometry of soils in a temperate pine forest. Acta Oecologica, 124, 104020. https://doi.org/10.1016/j.actao.2024.104020
Kemper, W.D. Rosenau, R.C. (1986). Aggregate stability and size distribution. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd ed. American Society of Agronomy, Madison, Wisconsin.pp. 383–411.
Kianmehr, A., Hojjati, S. M., Kooch, Y., & Ghasemi Aghbash, F. (2019). Effect of canopy composition on litterfall rate, respiration and some Soil properties in pure and mixed stands of beech and hornbeam. Journal of Forest Research and Development, 3(5), 373-376. (In Persian)
Kooch, Y., & Dolat Zarei, F. (2023). The effect of different canopy composition of shrublands on soil quality indicators in a semi-arid climate of Iran. Geoderma Regional, 34, e00688. https://doi.org/10.1016/j.geodrs.2023.e00688
Kooch, Y., & Noghre, N. (2020) The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Science of The Total Environment, 703, 1–9. https://doi.org/10.1016/j.scitotenv.2019.135497
Kooch, Y., & Noghre, N. (2020). The effect of shrubland and grassland vegetation types on soil fauna and flora activities in a mountainous semi-arid landscape of Iran. Science of the Total Environment, 703(7): 1-9. DOI: 10.1016/j.scitotenv.2019.135497
Kooch, Y., & Sohrabzadeh, Z. (2024). Soil quality indicators are clearly plant species-specific: Implication for ecosystem management in a semi-arid landscape. Ecological Engineering, 207, 107357. https://doi.org/10.1016/j.ecoleng.2024.107357
Kooch, Y., Ehsani, S., & Akbarinia, M. (2020). Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems. Soil and Tillage Research, 200(7): 1-11. DOI: 10.1016/j.still.2020.104621
Kooch, Y., Ghorbanzadeh, N., Hajimirzaaghaee, S., Francaviglia, R. (2023). Soil biological quality as affected by vegetation types in shrublands of a semi-arid montane environment. Applied Soil Ecology. 189, 104980. DOI: 10.1016/j.apsoil.2023.104980
Kooch, Y., Ghorbanzadeh, N., Wirth, S., Novara, A., & Shah Piri, A. (2021). Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecological Indicators. 126,107672. DOI: 10.1016/j.ecolind.2021.107672
Kooch, Y., Rostayee, F., & Hosseini, S. M. (2016). Effects of tree species on topsoil properties and nitrogen cycling in natural forest and tree plantations of northern Iran. Catena, 144, 65–73.
Kooch, Y., Samadzadeh, B., & Hosseini, S.M., (2017). The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. Catena, 150, 223-229. DOI: 10.1016/j.catena.2016.11.023
Kooch, Y., Tavakoli Feizabadi, M., & Haghverdi, K. (2023). The Effect of Plantation Stands with Different Ages and Rangeland cover on the Properties of Organic and Surface Soil Layer. Journal of Water and Soil, 37(5), 701-720. (In Persian with English abstract). https://doi.org/10.22067/jsw.2023.82251.1280
Lagomarsino, A., Benedetti, A., Marinari, S., Pompili, L., Moscatelli, M.C., Roggero, P.P., Lai, R., Ledda, L., & Grego, S. (2011). Soil organic C variability and microbial functions in a Mediterranean agro-forest ecosystem. Biology and Fertility of Soils, 47, 283–291. DOI: 10.1007/s00374-010-0530-4
Lee, S.-H., Kim, M.-S., Kim, J.-G., & Kim, S. O. (2020). Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability, 12(19), 8209. DOI: 10.3390/su12198209
Lemanceau, P., Creamer, R., & Griffiths, B. S. (2016). Soil biodiversity and ecosystem functions across Europe: A transect covering variations in bio-geographical zones, land use and soil properties. Applied Soil Ecology, 97, 1–2. doi: 10.1016/j.apsoil.2015.07.017.
Lemanowicz, J., Haddad, S.A., Bartkowiak, A., Lamparski, R. & Wojewódzki, P. (2020). The role of an urban park's tree stands in shaping the enzymatic activity, glomalin content and physicochemical properties of soil. Sci. Total Environ, 741,140446. doi: 10.1016/j.scitotenv.2020.140446
Li, L., Vogel, J., He, Z., Zou, X., Ruan, H., Huang, W., Wang, J. & Bianchi, T.S. (2016). Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PloS one11(3), p.e0150898.
Li, M., Zhou, X., Zhang, Q. & Cheng, X. (2014). Consequences of afforestation for soil nitrogen dynamics in Central China. Agriculture, Ecosystems and Environment, 183(4): 40–46
Li, Z., Wu, X. & Chen, B. (2007). Changes in transformation of soil organic C and functional diversity of soil microbial community under different land uses. Agricultural Sciences in China, 6(10),1235–1245. https://doi.org/10.1016/S1671-2927(07)60168-0
Liao, C., Luo, Y., Fang, C., Chen, J., & Li, B. (2012). The effects of plantation practice on soil properties based on the comparison between natural and planted forests: a meta‐analysis. Global Ecology and Biogeography, 21(3), 318-327. https://doi.org/10.1111/j.1466-8238.2011.00690.x
Ling, N., Sun, Y., Ma, J., Guo, J., Zhu, P., Peng, C. & Shen, Q. (2014). Response of the bacterial diversity and soil enzyme activity in particle-size fractions of mollisol after different fertilisation in a long-term experiment. Biology and Fertility of Soils, 50, 901–911. DOI: 10.1007/s00374-014-0911-1
Liu, Y., Wei, X., Guo, X., Niu, D., Zhang, J. Gong, X. & Jiang, Y. (2012). The long-term effects of reforestation on soil microbial biomass carbon in sub-tropic severe red soil degradation areas. Forest Ecology and Management, 285(8): 77-84.
Malek Poor, B., Ahmadi, T. & Kazemi Mazandarani, S.S. (2012). Investigation of land covers management effect on physical and chemical properties of soil at Kojur region, Mazandaran. Iran. J. Plant Eco-physiol, 3, 90–100
Mohmedi Kartalaei, Z., Kooch, Y., & Dianati Tilaki, G. A. (2023). Litter and soil properties under woody and non-woody vegetation types: Implication for ecosystem management in a mountainous semi-arid landscape. Journal of Environmental Management, 348: 119238. https://doi.org/10.1016/j.jenvman.2023.119238
Mohr, D., Simon, M., & Topp, W. (2005). Stand composition affects soil quality in oak stands on reclaimed and natural sites. Geoderma, 129: 45-53. https://doi.org/10.1016/j.geoderma.2004.12.029
Moscatelli, M.C., Tizio, A.D., Marinari, S. & Grego, S. (2007). Microbial indicators related to soil carbon in Mediterranean land use systems. Soil and Tillage Research, 97, 51-59
Mousavi Sani, M., Azarakhshi, M., Nazari Samani, A., &Farzadmehr, J. (2023). Determining the effect of plant species type on some soil properties in the mountain rangelands in Kakhk watershed. Journal of Rangeland, 16(4), 765-778. (In Persian)
Mulia, R., Hoang, S.V., Dinh, V. M., Duong, N.B.T., Nguyen, A.D., Lam, D.H., Thi Hoang, D.T., & van Noordwijk, M. (2021). Earthworm diversity, forest conversion and agroforestry in Quang Nam Province, Vietnam. Land, 10(1), 10-36. https://doi.org/10.3390/land10010036
Nannipieri, P., Kandeler, E. & Ruggiero, P. (2002.) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 1–33
Neatrour, M. A., Jones, R. H., & Golladay, S. W. (2005). Correlations between soil nutrient availability and fine-root biomass at two spatial scales in forested wetlands with contrasting hydrological regimes. Canadian Journal of Forest Research, 35(12), 2934–2941.
Neher, D.A. (1999). Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agroforestry Systems, 45, 159-185.
Nianpeng, H., Yunhai, Z., Jingzhong, D., Xingguo, H., Taogetao, B., & Guirui, Y. (2012). Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Geographical Sciences, 22, 859–873. DOI: 10.1007/s11442-012-0968-4
Paz-Ferreiro, J., Gascó, G., Gutiérrez, B. & Méndez, A. (2011). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biology and Fertility of Soils, 48(5), 511–517. doi:10.1007/s00374-011-0644-3
Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. (2012). Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludgeand sewage sludge bio char to soil. Biology and Fertility of Soils, 48, 511–517. DOI: 10.1007/s00374-011-0644-3
Perie C. & Ouimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315-325
Phillips, H.R.P., Guerra, C.A., Bartz, M.L.C., Briones, G., Brown, T. W., Crowther, O., et al. (2019). Global distribution of earthworm diversity. Science, 366 (6464): 480–485. https://dx.doi.org/10.1126/science. aax4851
Piao, H.C., Zhu, J.M., Liu, G.S., Liu, C.Q., & Tao, F.X. (2006). Changes of natural 13C abundance in microbial biomass during litter in Douglas-fir Forests. Canadian Journal of Forest Research, 20: 259-266. https://doi.org/10.1016/j.apsoil.2005.09.006
Pires, L.F., Brinatti, A.M., Saab, S.C., & Cassaro, F.A. (2014). Porosity distribution by computed tomography and its importance to characterise soil clod samples. Applied Radiation and Isotopes, 92, 37–45. https://doi.org/10.1016/j.apradiso.2014.06.010
Qiu, Q., Li, J. Y., Wang, J. H., He, Q., Su, Y. & Ma, J. W. (2015). Interactions between soil water and fertilizer application on fine root biomass yield and morphology of Catalpa bungei seedlings. Applied Mechanics and Materials, 700, 323–333.
Raiesi, F. & Asadi, E. (2006). Soil microbial activity and litter turnover in native grazed and ungrazed rangelands in a semiarid ecosystem. Biology and Fertility of Soils, 43, 76-82.
Ravindran, A., Shang-Shyng, A. & Yang, A. (2015). Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection, 48: 362-369. https://doi.org/10.1016/j.jmii.2014.02.003
Robertson, G. P., Coleman, D. C., Sollins, P., & Bledsoe, C. S. (1999). Standard soil methods for long-term ecological research (Vol. 2). Oxford University Press on Demand.
Salehi, A., Ghorbanzadeh, N., & Kahneh, E. (2013). Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantation in the north of Iran. Journal of Forest Science, 59, 223–229. DOI: 10.17221/41/2012-JFS
Sasongko, P.E., Purwanto, P., Dewi, W.S., & Hidayat, R. (2019). Soil microbial communities below decomposing plant litter from different land uses in Tutur Village. The 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University AIP Conf. Proc. 2019(1):040002.
Sharrow, S. H., & Ismail, S. (2004). Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agroforestry Systems, 60, 123–130. DOI: 10.1023/B:AGFO.0000013267.87896.41
Sofo, A., Mininni, A. N., Ricciuti, P. (2020). Soil macrofauna: A key factor for increasing soil fertility and promoting sustainable soil use in fruit orchard agrosystems. Agronomy, 10(4), 456. https://doi.org/10.3390/agronomy10040456
Sohrabi, H., Jourgholami, M., Lo Monaco, A., & Picchio, R. (2022). Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land, 11(5), 746. https://doi.org/10.3390/land11050746
Sullivan, P.F., Stokes, M.C., McMillan, C.K., &Weintraub, M. N. (2020). Labile carbon limits late winter microbial activity near Arctic tree line. Nature Communications, 11(1): 1-9. DOI:10.1038/s41467-020-17790-5
Tauqeer, H.M., Turan, V., & Iqbal, M. (2022). In: Production of safer vegetables from heavy metals contaminated soils: the current situation, concerns associated with human health and novel management strategies. Springer, Cham. 301–312. DOI:10.1007/978-3-030-89984-4_28
Tavakoli, M., Kooch, Y., & Akbarinia, M. (2018, May). The effect of degraded and reclaimed forest areas on carbon dioxide gas emissions and soil carbon mineralization in West of Mazandaran. In: Proceedings of the International Symposium of Climate Change and Dendrochronology in Caspian Ecosystems, Sari, Iran.
Tong, H., Simpson, A. J., Paul, E. A., & Simpson, M. J. (2021). ‘Land-use change and environmental properties alter the quantity and molecular composition of soil-derived dissolved organic matter. ACS Earth and Space Chemistry, 5(6), 1395–1406. https://doi.org/10.1021/acsearthspacechem.1c00033.
Tucker Serniak, L. (2017). The effects of earthworms on carbon dynamics in forest soils. Biol. Invasions 12, 213–229.
Wang, C., Zhang, G., Zhu, P., Chen, S., Wan, Y. (2023). Spatial variation of soil functions affected by land use type and slope position in agricultural small watershed. Catena, 225, 107029. https://doi.org/10.1016/j.catena.2023.107029
Wang, Q., Liu, J., Wang, Y., Guan, J., Liu, L., & Lv, D.A. (2012). Land use effects on soil quality along a native wetland to cropland chronosequence. European Journal of Soil Biology, 53, 114–120. https://doi.org/10.1016/j.ejsobi.2012.09.008
Wang, Q., Wang, S., Fan, B., & Yu, X. (2007). Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: effect of planting conifers with broadleaved species. Plant and Soil, 297(1-2), 201-211. https://doi.org/10.1007/s11104-007-9333-2 ·
Wang, Q., Xiao, F., He, T. & Wang, S. (2010). Responses of labile soil organic carbon and enzyme activity in mineral soils to forest conversion in the subtropics. Annals of Forest Science, 70, 579–587.
Wang, R., Creamer, C.A., Wang, X., He, P., Xu, Z., & Jiang, Y. (2016). The effects of a 9-year nitrogen and water addition on soil aggregate phosphorus and sulfur availability in semi-arid grassland. Ecological Indicators, 61, 806–814. https://doi.org/10.1016/j.ecolind.2015.10.033
Wardle, D. A., Nilsson, M., Zackrisson, O., & Gallet, C. (2003). Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry, 35: 827-835. https://doi.org/10.1016/S0038-0717(03)00118-4
Wollum, A.G. (1983). Cultural methods for soil microorganisms. In: “Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties” (Page AL, Miller RH, Keeney DR eds). American Society of Agronomy, Soil Science Society of America, Madison, WI, USA. 781- 802. doi: 10.2134/agronmonogr9.2.2ed. c37
Xia, J., Ren, R., Chen, Y., Sun, J., Zhao, X., Zhang, S. (2020). Multifractal characteristics of soil particle distribution under different vegetation types in the Yellow River Delta chenier of China. Geoderma, 368, 114311. DOI:10.1016/j.geoderma.2020.114311
Xu, X., Han, L., Wang, Y. & Inubushi, K. (2007). Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Science and Plant Nutrition, 53(4): 430-440.
Xu, X., Han, L., Wang, Y., & Inubushi, K. (2007). Influence of vegetation types and soil properties on microbial biomass carbon and metabolic quotients in temperate volcanic and tropical forest soils. Soil Science and Plant Nutrition, 53(4): 430-440. https://doi.org/10.1111/j.1747-0765.2007.00146.x
Yang, K., Zhu, J., Zhang, M., Yan, Q. & Sun, O.J. (2010). Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. Journal of Plant Ecology, 3(3), 175-182. https://doi.org/10.1093/jpe/rtq022
Yao, Y., Shaoa, M., Fu, X., Wang, X., & Wei, X. 2020. Effects of shrubs on soil nutrients and enzymatic activities over a 0–100 cm soil profile in the desert-loess transition zone. Catena, 174, 362–370. https://doi.org/10.1016/j.catena.2018.11.031
Yifru, A., & Taye, B. (2011). Land use effects on soil organic carbon and nitrogen in some soils of Bale, Southeastern Ethiopia. Trop. Subtrop. Agroecosyst, 14 (1), 229–235. https://doi.org/10.1016/j.ecolind.2022.109116
Yuan, Z. Y., & Chen, H. Y. (2010). Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Critical Reviews in Plant Sciences, 29(4): 204-221. https://doi.org/10.1080/07352689.2010.483579
Zahedifar, M. (2023). Assessing alteration of soil quality, degradation, and resistance indices under different land uses through network and factor analysis. Catena, 222, 106807. https://doi.org/10.1016/j.catena.2022.106807
Zancan, S., Trevisan, R. & Paoletti, M. G. (2006). Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems & Environment, 112(1): 1–12. https://doi.org/10.1016/j.agee.2005.06.018
Zarafshar, M., Vincent, G., Korboulewsky, N., & Bazot, S. (2024). The impact of stand composition and tree density on topsoil characteristics and soil microbial activities. Catena, 234: 107541. https://doi.org/10.1016/j.catena.2023.107541
Zeng, D.H., Hu, Y.L., Chang, S.X., & Fan, Z.P. (2009). Land cover change effects on soil chemical and biological properties after planting Mongolian pine (Pinus sylvestris var. mongolica) in sandy lands in Keerqin, northeastern China. Plant Soil, 317, 121–133. DOI:10.1007/s11104-008-9793-z
Zeng, Y., Fang, X., Xiang, W., Deng, X. & Peng, C. (2017). Stoichiometric and nutrient resorption characteristics of dominant tree species in subtropical Chinese forests. Ecology and Evolution, 7(2):11033–11043
Zhang, K., Zheng, H., Chen, F.L., Ouyang, Z.Y., Wang, Y., Wu, Y.F., Lan, J., Fu, M., & Xiang, X.W. (2015). Changes in soil quality after converting Pinus to Eucalyptus plantations in southern China. Solid Earth, 6, 115–123. DOI:10.5194/se-6-115-2015
Zhang, L., Jing, Y., Chen, C., Xiang, Y., Rezaei Rashti, M., Li, Y., Deng, Q. & Zhang, R. (2021). Effects of biochar application on soil nitrogen transformation, microbial functional genes, enzyme activity, and plant nitrogen uptake: A meta‐analysis of field studies. GCB Bioenergy, 13(12), 1859–1873. https://doi.org/10.1111/gcbb.12898
Zhang, Y., Wang, L., Jiang, J., Zhang, J., Zhang, Z., & Zhang, M. (2022). Application of soil quality index to determine the effects of different vegetation types on soil quality in the Yellow River Delta wetland. Ecological Indicators, 14, 109116. https://doi.org/10.1016/j.ecolind.2022.109116
Zhan-Yuan, Y. U., Fu-Sheng, C. H. E. N., De-Hui, Z. E. N. G., Qiong, Z. H. A. O. & Guang-Sheng, C. H. E. N. (2008). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy Soil. Pedosphere, 18(6): 775-784.
Zhao, C., Li, Y., Zhang, C., Miao, Y., Liu, M., Zhuang, W., Shao, Y., Zhang, W., & Fu, S. (2021). Considerable impacts of litter inputs on soil nematode community composition in a young Acacia crassicapa plantation. Soil Ecology Letters, 3(2), 145–155. https://doi.org/10.1007/s42832-021-0085-3
Zhou, Y., Sha, M., Jin, H., Wang, L., Zhang, J., Xu, Z., Tan, B., Chen, L., Wang, L., Liu, S., Xiao, J., You, C., Huang, Y., Chen, Y. & Liu, Y. (2023). The expansion of evergreen and deciduous shrubs changed the chemical characteristics and biological community of alpine meadows soil. European Journal of Soil Biology. 117: 103505. https://doi.org/10.1016/j.ejsobi.2023.103505.