تاثیر قارچ حل‌کننده فسفات، هیومیک اسید و منابع فسفر بر رشد و جذب فسفر گیاه گوجه فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

تاثیر کاربرد قارچ تریکودرما، هیومیک اسید و منابع فسفر بر فراهمی فسفر خاک و تاثیر آن بر ویژگی­های رشد و جذب فسفر گیاه گوجه فرنگی در یک آزمایش گلخانه‌ای مورد بررسی قرار گرفت. فاکتورهای آزمایشی شامل 1) قارچ (با و بدون Trichoderma koningii)، 2) هیومیک اسید (0، 2 و 4 گرم برکیلوگرم خاک) و 3) منبع فسفر (بدون فسفر، کاربرد تری کلسیم فسفات و سوپر فسفات ساده) بودند. بیشترین مقادیر وزن تر و خشک اندام هوایی و ریشه و شاخص کلرفیل گیاه در تیمار کاربرد قارچ، 4 گرم بر کیلوگرم هیومیک اسید و کاربرد سوپرفسفات ساده مشاهده شد. مایه­زنی قارچ باعث افزایش مقدار جذب فسفر ریشه در خاک بدون فسفر، تیمار شده با تری کلسیم فسفات و سوپر فسفات ساده به­ترتیب به میزان 7/33، 9/85 و 8/68 درصد شد. بیشترین مقدار فسفر فراهم خاک و جذب فسفر اندام هوایی گیاه در تیمار کاربرد قارچ، سوپر فسفات ساده و مقدار 4 گرم بر کیلوگرم هیومیک اسید مشاهده شد که نسبت به تیمار بدون قارچ، فسفر و هیومیک اسید به میزان 58 و 153 درصد بیشتر بود. در مجموع، استفاده از هیومیک اسید و قارچ تریکودرما به­همراه کود شیمیایی فسفره می­تواند راهکاری مناسب جهت افزایش فسفر فراهم خاک باشد و جذب فسفر و رشد گیاه گوجه فرنگی را بهبود بخشد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of phosphate solubilizing fungi, humic acid and phosphorus sources on growth and phosphorus uptake of tomato plant

نویسندگان [English]

  • Safoora Nahidan
  • Sara Movahed
Department of Soil Sciences and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

The effect of Trichoderma fungus, humic acid and phosphorus sources on soil phosphorus availability and its effect on growth characteristics and phosphorus uptake of tomato plant was investigated in a greenhouse experiment. The experimental factors were 1) fungus (with and without Trichoderma koningii), 2) humic acid (0, 2 and 4 g kg-1 soil) and 3) phosphorus treatment (without phosphorus, use of three calcium phosphate and simple superphosphate. The highest values of fresh and dry weight of shoots and roots and chlorophyll index of the plant were observed in the treatment of fungus, 4 g kg-1 of humic acid and the application of simple superphosphate. Fungi inoculation led to increase the amount of root phosphorus uptake in soil treatment of without phosphorus, treated with three calcium phosphate and simple superphosphate by 33.7, 85.9 and 68.8%, respectively. The highest amount of soil available phosphorus and shoot phosphorus uptake was observed in soil treated with fungi, simple superphosphate and 4 g kg-1 of humic acid, which was 58 and 153% higher than the treatment without fungi, phosphorus and humic acid. In general, the combined use of humic acid, Trichoderma and chemical phosphorus fertilizer can be a suitable solution to increase the availability of soil phosphorus and improve the phosphorus uptake and growth of tomato plant. 

کلیدواژه‌ها [English]

  • Humic acid
  • Phosphorus release
  • Sustainable agriculture
  • Trichoderma

EXTENDED ABSTRACT

 

Introduction

Phosphorus (P) deficiency is one of the major problems in agricultural soils around the world. The use of phosphate solubilizing fungi (PSF) such as Trichoderma is known as one of the most effective ways for increasing P availability and improving P use efficiency. The application of humic acid also improves the bioavailability of nutrients such as P in the soil, stimulates plant growth and development, protects against biotic and abiotic stresses and increases agricultural productivity. Moreover, several authors have reported that the combination of microbial inoculants with humic acid gives more reproducible results for plant growth and production. However, their effect may be related to P availability in soil. Therefore, this study was conducted to investigate the effect of Trichoderma and humic acid on soil phosphorus availability, growth characteristics and phosphorus uptake of tomato plant in soil fertilized with soluble and insoluble phosphorus sources.

Materials and methods

A factorial experiment was conducted in a completely randomized block design with three replications in greenhouse conditions. The experimental factors were 1) fungus (with and without Trichoderma koningii), 2) humic acid (0, 2 and 4 g kg-1 soil) and 3) phosphorus treatment (without phosphorus, use of 0.25 mg P kg-1 from three calcium phosphate and simple superphosphate). Humic acid and phosphorous treatments were mixed in the soil matrix, then Trichoderma (107 spore g-1 soil) was added to half of pots. Then 5 sterile tomato seeds were planted in each pot at 2-cm depth which were declined to 1 plant in each pot after the emerging and greening phase. At the end of cultivation period, height, fresh and dry weight of root and shoot, chlorophyll index and also P uptake in root and shoot of tomato were determined after dry digestion. Also the amount of available P in the soil was measured after extraction with NaHCO3.

Results

The results showed that fungi inoculation and application of humic acid increased the fresh and dry weight of shoot and root and chlorophyll index of the tomato plant in soil unfertilized and fertilized with different P sources. The highest values of the aforementioned parameters of tomato were observed in the treatment of fungus, 4 g kg-1 of humic acid and application of simple superphosphate. Fungi inoculation led to increase the amount of root P uptake in soil without P, treated with three calcium phosphate and simple superphosphate by 33.7, 85.9 and 68.8%, respectively. The highest amount of soil available P and shoot P uptake was also observed in soil treated with fungi, simple superphosphate and 4 g kg-1 of humic acid, which was 58 and 153% higher than the soil treatment without fungus, P and humic acid.

Conclusion

Application of humic acid and Trichoderma to plants grown in soluble or insoluble P medium markedly enhanced P use efficiency. The combined application of 4 g kg-1 humic acid, Trichoderma and simple superphosphate fertilizer can be a suitable solution to increase the availability of soil P and improve P uptake and growth of tomato plant. The information on the availability of P following PSF and humic acid addition to plant growth medium may help in better management of P fertilization.

Author Contribution

Conceptualization, S.N.; methodology, S.N. and S.M.; software, S.N. and S.M.; validation, S.N.; formal analysis, S.N and S.M.; investigation, S.N.; resources, S.N and S.M.; data curation, S.M.; writing-original draft preparation, S.N.; writing-review and editing, S.N.; visualization, S.N.; supervision, S.N.; project administration, S.N.

All authors have read and agreed to the published version of the manuscript.

 

Data Availability Statement

Data is available on reasonable request from the corresponding author.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The authors declare no conflict of interest.

 

 

Adesemoye, A.O., & Kloepper, J.W. (2009). Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology Biotechnology, 85, 1–12.
Ai, S., Meng, X., Zhang, Z., Li, R., Teng, W., Cheng, K., & Yang, F. (2023). Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation. Chemosphere332, 138822.‏
Behravan, H., Khorassani, R., Fotovat, A., Moezzi, A., & Taghavi, M. (2020). The Effect of humic acid and phosphorus fertilizer on phosphatase enzymes, active carbon and available phosphorus in sugarcane rhizosphere. Iranian Journal of Soil and Water Research50(10), 2571-2581.‏ (In Persion)
Burt, R. (2004). Soil survey laboratory methods manual: Soil survey investigations. Version 4.0. Natural Resources Conservation Service, Nebraska, United States.
Canellas, L.P., Olivares, F.L., Okorokova-Façanha, A.L., & Façanha, A.R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant physiology130(4), 1951-1957.‏
Cozzolino, V., Monda, H., Savy, D., Di Meo, V., Vinci, G., & Smalla, K. (2021). Cooperation among phosphate-solubilizing bacteria, humic acids and arbuscular mycorrhizal fungi induces soil microbiome shifts and enhances plant nutrient uptake. Chemical and Biological Technologies in Agriculture, 8(1), 1-18.
De Hita, D., Fuentes, M., Fernández, V., Zamarreño, A. M., Olaetxea, M., & García-Mina, J.M. (2020). Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid. Frontiers in plant science11, 493.‏
Emami, S., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., Motashare Zadeh, B., & Sarmadian, F. (2018). Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 65, 1–9.
Ghorchiani, M., Etesami, H., & Alikhani, H.A. (2018). Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agriculture Ecosystem Environment, 258, 59–70.
Halajnia, A., Haghnia, G.H., Fotovat, A.M. I.R., & Khorasani, R. (2007). Effect of organic matter on phosphorus availability in calcareous soils. JWSS-Isfahan University of Technology10(4), 121-133.‏(In Persion)
Hasan, A., Tabassum, B., Hashim, M., & Khan, N. 2024. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: A review. Bacteria, 3(2): 59-75.
Jahandideh, A., Barani, M., Dordipour, E., & Ghorbani Nasrabadi, R. (2020). The effect of humic acid on the availability of phosphorus fertilizer and some physiological traits of rapeseed (canola). Water and Soil33(6), 873-884.‏ (In Persion)
Jindo, K., Soares, T.S., Peres, LEP., Azevedo, I.G., Aguiar, N.O., Mazzei, P., Spaccini, R., Piccolo, A., Olivares, F.L., & Canellas, L.P. (2016). Phosphorus speciation and high-affnity transporters are infuenced by humic substances. Journal of Plant Nutrition and Soil Science, 179, 206– 214.
Kashka, F.M., Pirdashti, H., Yaghoubian, Y., & Bakhshandeh, E. (2018). The role of Trichoderma and Enterobacter inoculation on improving wheat yield in different levels of phosphorus fertilizer.‏ Journal of Agroecology, 10 (2), 430-443. (In Persion).
Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J., & Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis51(12), 1658-1669.‏
Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L., Wang, X., Gui, H., Qi, Q., Ruan, S., Guo, R., Zhang, X., Song, M., & Dong, Q. (2023). Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-P-tolerant cotton genotypes. Antioxidants12(2), 466.‏
Khalili, N., Ghorbani Nasrabadi, R., Baranimotlagh, M., & Khodadadi, R. (2023). The effect of humic acid and inoculation of actinomycetes isolates on phosphorus solubilization in laboratory condition and phosphorus content in maize (Zea mays). Journal of Soil Management and Sustainable Production13(2), 75-94.‏ (In Persion)
Khosh Manzar, E., Aliasgharzad, N., Arzanlou, M., Neyshabouri, M. R., & Khoshrou, B. (2019). The effect of Trichoderma isolates on tomato growth and nutrients uptake under water deficit stress. Journal of Agricultural Science and Sustainable Production29(2), 107-120 (In Persion).
Leme Filho, JF., Thomason, WE., Evanylo, GK., Zhang, X, Strickland, MS., Chim, BK., & Diatta, AA. (2020). The synergistic efects of humic substances and biofertilizers on plant development. International Journal of Plant & Soil Science, 32(7), 56-75.
Lermen, C., da Cruz, R.M.S., de Souza, J.S., de Almeida Marchi, B., & Alberton, O. (2017). Growth of Lippia alba (Mill.) NE Brown inoculated with arbuscular mycorrhizal fungi with different levels of humic substances and phosphorus in the soil. Journal of applied research on medicinal and aromatic plants7, 48-53.‏
Li, H.P., Han, Q.Q., Liu, Q.M., Gan, Y.N., Rensing, C., Rivera, W.L., Zhao, Q., & Zhang, J.L. (2023). Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiological Research, 127375.
Li, X., Zhi, Y., Jia, M., Wang, X., Tao, M., Wang, Z., & Xing, B. (2024). Properties and photosynthetic promotion mechanisms of artificial humic acid are feedstock-dependent. Carbon Research3(1), 4.‏
Mackowiak, C.L., Grossl, P.R., & Bugbee, B.G. (2001). Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science, 65, 1744-1750.
Mora,V., Baigorri, R., Bacaicoa, E., & Zamarreno, A. (2012) The humic acid-induced  changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture causedby humicacid in cucumber. Environmental and Experimental Botany, 76, 24-32.
Nahidan, S., Hashemi, S., & Zafari, D. (2019). Evaluation of phosphate solubilizing and potassium releasing ability of some Trichoderma species under in-vitro conditions. Iranian Journal of Soil and Water Research50(5), 1231-1242.‏ (In Persion).
Ohno, T., Griffin, T.S., Liebman, M., & Porter, G.A. (2005). Chemical characterization of soil phosphorus and organic matter in different cropping systems in Maine, USA. Agriculture Ecosystem Environment, 105, 625–634.
Olsen, S.R., & Sommers, L.E. (1982). Phosphorus. In Methods of soil analysis. Part 2, editd by. Page, A.L., Sparks, D.L., Helmke, P.A., & Loeppert, R.H. Madison WI: American Society of Agronomy. 403–30.
Rathor, P., Upadhyay, P., Ullah, A., Gorim, L.Y., & Thilakarathna, M.S. (2024). Humic acid improves wheat growth by modulating auxin and cytokinin biosynthesis pathways. AoB Plants16(2), plae018.‏
Rezakhani, L., Motesharezadeh, B., Tehrani, M. M., Etesami, H., & Hosseini, H. M. (2019). Phosphate–solubilizing bacteria and silicon synergistically augment phosphorus (P) uptake by wheat (Triticum aestivum L.) plant fertilized with soluble or insoluble P source. Ecotoxicology and Environmental Safety173, 504-513.‏
Ryan, J., Estefan, G., & Rashid, A. (2007). Soil and Plant Analysis Laboratory Manual. Center for Agricultural Research in the Dryland Areas (ICARDA), Aleppo, Syria.
Rui-Xia, L., Feng C., Guan P., Qi-Rong, S., Rong, L., Wei., C. (2015). Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. Plose One, 25, 1-16.
Sagar, R., Thippeshappa, G.N., Kadalli, G.G., & Dhananjaya, B.C. (2023). Phosphorus transformation in acid soil as influenced by humic substance. Phosphorus, Sulfur, and Silicon and the Related Elements198(12), 1029-1039.‏
Vance, C.P., Uhde‐Stone, C., & Allan, D.L. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. Journal of New phytologist, 157 (3), 423-447.
Veysi, H., Heidari, G., & Sohrabi, Y. (2016). The effect of mycorrhizal fungi and humic acid on yield and yield components of sunflower. Journal of Agroecology8(4), 567-582.‏ (In Persion).
Wang, X.J., Wang, Z.Q., & Li, S.G. (1995). The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil Use and Management11(2), 99-102.‏
Yang, X., Zhang, M., Li, J. & Yang, Z. (1985). Study on the effect of ammonium nitro-humus from several materials on fertilizer super phosphate. Application of Atomic Energy in Agriculture, 1, 45-50.
Yedidia, I., Srivastva, A.K., Kapulnik, Y., & Chet, I. (2001). Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil, 235, 235-242.
Zaidi, A., Khan, M.S., Ahemad, M., Oves, M., & Wani, P.A. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. Microbial Strategies for Crop Improvement. Springer, 23–50.