Ahmed, N., Basit, A., Bashir, S., Bashir, S., Bibi, I., Haider, Z., Li, Y. (2021). Effect of acidified biochar on soil phosphorus availability and fertilizer use efficiency of maize (Zea mays L.). Journal of King Saud University-Science, 33(8), 101635.
Ahmed, N., Deng, L., Wang, C., Shah, Z.-u.-H., Deng, L., Li, Y., Li, J., Chachar, S., Chachar, Z., Hayat, F., Bozdar, B., Ansari, F., Ali, R., Gong, L., & Tu, P. (2024). Advancements in biochar modification for enhanced phosphorus utilization in agriculture. Land, 13(5), 644.
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(14), 12700–12712.
Alotaibi, K. D., & Schoenau, J. J. (2019). Addition of biochar to a sandy desert soil: Effect on crop growth, water retention, and selected properties. Agronomy, 9, 327.
Anderson, J.P.E. 1982. Soil respiration. In: A.L. and R.H. Mille (Ed.), Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties. American Society of Agronomy. Madison, WI, pp. 831-871.
Arbelaez, L., Breton, Z., Mahdi, C., Pratt, C., & El Hanandeh, A. (2021). Modification of hardwood derived biochar to improve phosphorus adsorption. Environments, 8(5), 41.
Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S., & Khataee, A. (2021). Effects of phosphate-loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12), 1649–1664.
Azimzadeh, Y., Najafi, N., Abdolmaleki, E., & Amirloo, B. (2020). Changes in some chemical properties of various organic materials after converting in biochar and hydrochar. Applied Soil Research, 7(4), 1-17. (In Persian)
Bonilla, G. A. E., Durrer, A., & Cardoso, E. J. B. N. (2021). Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology, 157, 1-9.
Chandra, S., & Bhattacharya, J. (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. Journal of Cleaner Production, 215, 1123–1139.
Chen, M., Zhang, S., Liu, L., Wu, L., & Ding, X. (2021). Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil and Tillage Research, 212, 105060.
Chen, Q., Chen, J., Wang, J., Guo, J., Jin, Z., Yu, P., & Ma, Z. (2019). In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Science of the Total Environment, 666, 39-45.
Dai, L., Li, H., Tan, F., Zhu, N., Mingxiong, H., & Hu, G. (2016). Biochar: A potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy, 8(5), 852–858.
Davey, R. S., McNeill, A., Barnett, S., & Gupta, V. (2021). Potential for suppression of Rhizoctonia root rot is influenced by nutrient (N and P) and carbon inputs in a highly calcareous coarse-textured topsoil. Soil Research, 59(4), 329–345.
Domingues R.R., Trugilho P.F., Silva C.A., de Melo I.C.N., Melo L.C., Magriotis Z.M., and Sánchez-Monedero M.A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one, 12: 0176884.
Du, Z. Y., Wang, Q. H., Liu, F. C., Ma, H. L., Ma, B. Y., & Malhi, S. S. (2013). Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere, 23(2), 229–235.
Frene, J. P., Frazier, M., Liu, S., Clark, B., Parker, M., & Gardner, T. (2021). Early effect of pine biochar on peach-tree planting on microbial community composition and enzymatic activity. Applied Sciences, 11(4), 1473.
Gaskin, J., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069.
Ghodszad, L., Reyhanitabar, A., Maghsoodi, M. R., Lajayer, B. A., & Chang, S. X. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, 131176.
Gupta, R. K., Vashisht, M., Naresh, R. K., Dhingra, N., Sidhu, M. S., Singh, P. K., Rani, N., Al-Ansari, N., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2024). Biochar influences nitrogen and phosphorus dynamics in two texturally different soils. Scientific Reports, 14(1), 6533.
Hafeez, A., Pan, T., Tian, J., & Cai, K. (2022). Modified biochars and their effects on soil quality: a review. Environments, 9(5), 60.
Hussain, A. J., Al-Taey, D. K., & Kadhum, H. J. (2023). Biochar application increases the amount of nitrogen, phosphorus, and potassium in the soil: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 1213, No. 1, p. 012023). IOP Publishing.
Jenkinson, D. S. and Ladd J. N. (1981). Microbial biomass in soil measurement and turnover. P415-471, In: Paul E.A., Ladd, J.N. (Ed.). Soil Biochemistry, Marcel Dekker, Inc., NY, pp. 415-471.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019a). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19, 851–864.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019b). Investigation of physicochemical characteristics of biochars derived from corn residue and sugarcane bagasse in different pyrolysis temperatures. Iranian Journal of Soil and Water Research, 50(3), 725–739. (In Persian)
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2020). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20(2), 450-459.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2021). Impact of application of sulfur-modified biochar on some biochemical and microbiological attributes of soil. Iranian Journal of Soil and Water Research, 52(9), 2333–2344. (In Persian)
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2020). Characteristics of conocarpus wastes and common reed biochars as a predictor of potential environmental and agronomic applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2021). Investigating the effect of various surface and chemical modification approaches on corn residue and common reed-derived biochar traits. Applied Soil Research, 9(2), 73–86. (In Persian)
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2023). Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Conversion and Biorefinery, 13(2), 593-601.
Kizito, S., Luo, H., Lu, J., et al. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and reduce chemical fertilizer demand. Sustainability, 11, 3211.
Lemming, C., Oberson, A., Magid, J., Bruun, S., Scheutz, C., Frossard, E., & Jensen, L. S. (2019). Residual phosphorus availability after long-term soil application of organic waste.
Agriculture, Ecosystems & Environment, 270–271, 65–75.
https://doi.org/10.1016/j.agee.2018.10.019
Li, S., Zhang, Y., Yan, W., & Shangguan, Z. (2018). Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil and Tillage Research, 183, 100–108.
Liu, Q., Jiang, S., Su, X., Zhang, X., Cao, W., & Xu, Y. (2021). Role of biochar modified with ZnCl₂ and FeCl₃ on the electrochemical degradation of nitrobenzene. Chemosphere, 275, 129966.
Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., & Chen, W. (2017). Rice husk biochar impacts soil phosphorus availability, phosphatase activities, and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12–22.
Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F., & Naeem, A. (2022). Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. Journal of Soil Science and Plant Nutrition, 1-10.
Moradi, N., & Karimi, A. (2021). Effect of modified corn residue biochar on chemical fractions and bioavailability of cadmium in contaminated soil. Chemistry and Ecology, 37(3), 252-267.
Moradi, R., Siadat, S., Siahpoosh, A., Bakhshandeh, A., & Moradi Telavat, M. R. (2019). Evaluating quality indices of extracts in green and burnt sugarcane harvesting. Plant Productions, 42(3), 402-415. (In Persian)
Nazari, S., Rahimi, G., & Nezhad, A. K. J. (2019). Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. Journal of Environmental Chemical Engineering, 7(3), 103064.
Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In: Page, A.L., et al., Eds., Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties, Agronomy Monographs 9, 2nd Edition, ASA and SSSA, Madison, 403-430.
Omara, P., Singh, H., Singh, K., Sharma, L., Otim, F., & Obia, A. (2023). Short-term effect of field application of biochar on cation exchange capacity, pH, and electrical conductivity of sandy and clay loam temperate soils. Technology in Agronomy, 3(1).
Pan, H., Yang, X., Chen, H., Sarkar, B., Bolan, N., Shaheen, S. M., Wu, F., Che, L., Ma, Y., Rinklebe, J., & Wang, H. (2021). Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in contaminated soil. Science of the Total Environment, 763, 144218.
Purnawan, C., Dewi, C. C., Ramadan, B. S., Budihardjo, M. A., Effendi, A. J., & Hidayat, S. (2021). The influence of ZnCl₂ activation on macronutrient NPK adsorption simultaneously using coconut shell biochar for soil fertility improvement. Molekul, 16(1), 75–81.
Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S. S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6(1), 62.
Regmi, P. Moscoso, J. L. G., Kumar, S., Cao, X., Mao, J., and Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 61-69.
Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F. and Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9-15.
Saeed, M. F., Jamal, A., Muhammad, D., Shah, G. M., Bakhat, H. F., Ahmad, I., Ali, S., Ihsan, F., & Wang, J. (2021). Optimizing phosphorus levels in wheat grown in a calcareous soil with the use of adsorption isotherm models. Journal of Soil Science and Plant Nutrition, 21, 81–94.
Sorkheh, S., Moezzi, A., Moradi, N., & Karimi, A. (2024). Modified biochar application effects on soil chemical properties and nutrients uptake in sugarcane cv. CP73-21. Iranian Journal of Soil and Water Research, 55(9), 1521-1536.
Safian, M., Motaghian, H., & Hosseinpur, A. (2020). Effects of sugarcane residue biochar and P fertilizer on P availability and its fractions in a calcareous clay loam soil. Biochar, 2(3), 357–367.
Shokuhifar, Y., Ghahsareh, A. M., Shahbazi, K., Tehrani, M. M., & Besharati, H. (2023). Biochar and wheat straw affecting soil chemistry and microbial biomass carbon countrywide. Biomass Conversion and Biorefinery, 13(6), 5407-5417.
Singh, B., Camps-Arbestain, M., & Lehmann, J. (Eds.). (2017). Biochar: A guide to analytical methods. CSIRO Publishing.
Singh, S., Swami, S., Gogoi, J., Dwivedi, D. K., Turkar, G. P., Tamang, B., & Borah, S. K. (2023). Effect of biochar-mediated treatments on the improvement of soil acidity, crop performance, and soil properties. Ama, Agricultural Mechanization in Asia, Africa & Latin America, 54, 13575–13603.
Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145.
Thies, J. E., Rillig, M. C., & Graber, E. R. (2019). Biochar effects on the abundance, activity, and diversity of the soil biota. In Biochar for Environmental Management (2nd ed., pp. 359–422). Routledge.
Wahba, M., Fawkia, L. A. B. İ. B., & Zaghloul, A. (2019). Management of calcareous soils in arid region. International Journal of Environmental Pollution and Environmental Modelling, 2(5), 248-258.
Wang, L., Ok, Y. S., Tsang, D. C. W., Alessi, D. S., Rinklebe, J., Wang, H., Mašek, O., Hou, R., O’Connor, D., & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns, and implications for soil amendment. Soil Use and Management, 36, 358–386.
Wen, E., Yang, X., Chen, H., Shaheen, S. M., Sarkar, B., Xu, S., & Wang, H. (2021). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 407, 124344.
Wu, L., Zhang, S., Wang, J., & Ding, X. (2020). Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column, and field tests. Environmental Pollution, 261, 114223.
Wu, L., Zheng, H., & Wang, X. (2021). Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294, 112993.
Yang, D. I. N. G., Yunguo, L. I. U., Shaobo, L. I. U., Huang, X., Zhongwu, L. I., Xiaofei, T. A. N., & Lu, Z. H. O. U. (2017). Potential benefits of biochar in agricultural soils: a review. Pedosphere, 27(4), 645-661.
Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist, 210(3), 1022–1032.
Zhang, Y., Zhao, C., Chen, G., Zhou, J., Chen, Z., Li, Z., & Chen, Y. (2020). Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide–modified straw biochar in an arsenic-contaminated soil. Environmental Science and Pollution Research, 27, 23761-23768.
Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179.