تأثیر بیوچارهای اصلاح‌شده بر برخی ویژگی‌های زیستی و شیمیایی یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 استادیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 محقق گروه تحقیقات به زراعی، مؤسسه تحقیقات و آموزش نیشکر خوزستان، اهواز، ایران.

چکیده

در خاک‌های آهکی مناطق خشک و نیمه‌خشک ماده آلی کم، مقدار کربنات کلسیم زیاد و pH قلیایی سبب کاهش فعالیت میکروبی وکاهش فراهمی عناصر غذایی به‌ویژه فسفر و به‌دنبال آن محدودیت در رشد گیاهان می‌شود. این پژوهش با هدف بررسی تأثیر بیوچار حاصل از بقایای برداشت سبز نیشکر و بیوچارهای اصلاح شده با FeCl2، ZnCl2، اسید سیتریک و اسید اگزالیک بر برخی ویژگی‌های شیمیایی و زیستی یک خاک آهکی انجام شد. آزمایش به‌صورت طرح کاملاً تصادفی با شش تیمار شامل 1- شاهد (C)) بدون بیوچار) 2- بیوچار اصلاح نشده(B)  3- بیوچار اصلاح شده با اسید سیتریک (CAB)، 4- بیوچار اصلاح شده با اسید اگزالیک (OXB)، 5- بیوچار اصلاح شده با ZnCl2 (ZnB) و 6- بیوچار اصلاح شده با FeCl2 (FeB)  در 3 تکرار  اجرا شد. بیوچار در دمای 350 درجه سلسیوس تهیه و پس از اصلاح شیمیایی، به­مقدار یک درصد با 300 گرم خاک مخلوط شده و نمونه‌ها به مدت سه ماه در دمای ثابت (25±2 درجه سلسیوس) نگه‌داری و در پایان آزمایش برخی ویژگی­های شیمیایی و زیستی خاک اندازه­گیری شدند. نتایج نشان داد کاربرد بیوچارها سبب کاهش pH خاک (66/0-03/0 واحد)، افزایش پارامترهای هدایت الکتریکی (57/0-13/0 واحد)، ظرفیت تبادل کاتیونی (9/43-0/17 درصد)، کربن آلی کل (29/2-21/2 برابر)، غلظت فسفر قابل دسترس (2/96-1/52 درصد)، تنفس میکروبی خاک (3/69-9/42 درصد) و کربن زیست‌توده میکروبی خاک (7/93-2/54 درصد) شد که در این میان تیمار بیوچار اصلاح شده با اسید سیتریک بیشترین تأثیر معنی‌دار را بر ویژگی‌های بررسی شده داشت. به‌طور کلی بیوچار تهیه شده از بقایای برداشت سبز نیشکر و اصلاح شده با اسید سیتریک می­تواند ماده آلی خاک، فراهمی عناصر غذایی و ویژگی­های زیستی خاک در شرایط خاک‌ مورد استفاده، مؤثر باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of modified biochars on some biological and chemical properties of calcareous soil

نویسندگان [English]

  • Pardis Khaji 1
  • Abdolamir Moezzi 1
  • Naeimeh Enayatizamir 1
  • Neda Moradi 2
  • Akbar Karimi 3
1 Department of Soil Science, Faculty of agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Assistant Professor, Department of Soil Science, Faculty of agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Researcher, Department of Agronomy, Khuzestan Sugarcane Research and Training Institute, Ahvaz, Iran
چکیده [English]

In calcareous soils of arid and semi-arid regions, low organic matter, high calcium carbonate content, and high pH reduce microbial activity and decrease the availability of nutrients, especially phosphorus, which in turn limits plant growth. This research aimed to investigate the effects of biochar derived from green sugarcane residues and biochars modified with FeCl2, ZnCl2, citric acid, and oxalic acid on some chemical and biological properties of a calcareous soil. The experiment was conducted in a completely randomized design with six treatments, including: 1- Control (C) (without biochar), 2- Unmodified biochar (B), 3- Biochar modified with citric acid (CAB), 4- Biochar modified with oxalic acid (OXB), 5- Biochar modified with ZnCl2 (ZnB), and 6- Biochar modified with FeCl2 (FeB), with three replications. The biochar was prepared at 350°C and, after chemical modification, mixed with 300 grams of soil at a rate of 1%. The samples were maintained at a constant temperature (25±2°C) for three months. At the end of the experiment, some chemical and biological properties of the soil were measured. The results showed that the application of biochars led to a decrease in soil pH (0.03-0.66 units), an increase in electrical conductivity (0.13-0.57 units), cation exchange capacity (17.0-43.9%), total organic carbon (2.21-2.29-fold), available phosphorus concentration (52.1-96.2%), soil microbial respiration (42.9-69.3%), and soil microbial biomass carbon (54.2-93.7%). Among these, the biochar treatment modified with citric acid had the most positive impact on the examined properties. Overall, biochar derived from green sugarcane residues and modified with citric acid could be effective in the soil organic matter, phosphorus availability, and soil biological properties under the studied soil conditions.

کلیدواژه‌ها [English]

  • Acid modified biochar
  • Available phosphorus
  • Metal salt-modified biochars
  • Microbial activity
  • Organic matter

EXTENDED ABSTRACT

Introduction

The limited availability of nutrients, particularly phosphorus, is a significant factor hindering plant growth in calcareous soils. Research indicates that the incorporation of organic amendments can influence phosphorus chemistry in the soil through various mechanisms, thereby enhancing phosphorus availability for plants. Biochar, a carbon-rich solid produced through the pyrolysis of biomass in low-oxygen conditions, has been proposed as a means to improve soil fertility and boost crop yields. The modification of biochar with organic acids can enhance its physical and chemical properties, including specific surface area, pore size, cation exchange capacity, and functional group composition. Additionally, the application of metal salts can further enhance these characteristics. Efficient management of agricultural waste, such as dried leaves and stalks from harvested green sugarcane, is essential. Converting these residues into biochar via pyrolysis presents a viable solution for their management. This research investigated the effect of green sugarcane residue biochars modified with FeCl2, ZnCl2, citric acid, and oxalic acid on improving the chemical and biological properties of soil.

Materials and Methods

Soil samples were collected from the surface layer (0-30 cm) of the Da'abal Khoza'i sugarcane industry. The incubation experiment utilized a completely randomized design with six treatments: 1) control (C) (no biochar), 2) unmodified biochar (B), 3) biochar modified with citric acid (CAB), 4) biochar modified with oxalic acid (OXB), 5) biochar modified with ZnCl₂ (ZnB), and 6) biochar modified with FeCl₂ (FeB), each replicated three times. The biochar samples were mixed with 300 grams of soil at a concentration of 1% w/w and maintained at a consistent temperature of 25±2 degrees Celsius for three months. Following the incubation period, the soil samples were air-dried, and various chemical and biological characteristics of the soil were assessed.

Results

The analysis of biochar demonstrated a decrease in pH of modified biochars compared to the unmodified ones. Specifically, biochar treated with citric and oxalic acids showed a reduction in pH by 2.78 and 2.26 units, respectively. Modifications using ZnCl2 and FeCl2 resulted in smaller pH decreases of 0.14 and 0.09 units, respectively, compared to the unmodified biochar. The most significant improvement in cation exchange capacity compared to the unmodified biochar was observed in biochar treated with citric acid (96.24 cmol kg-1). Moreover, the phosphorus content in the modified biochars was higher than in the unmodified sample, with citric acid-modified biochar exhibiting the greatest increase, reaching 0.78. After chemical and organic acid treatments, the biochars showed reductions in ash content, carbon percentage, and C/N ratio, while hydrogen, oxygen, and the hydrogen-to-carbon (H/C) and oxygen-to-carbon (O/C) ratios increased. Incubation experiments revealed that biochar application reduced soil pH (by 0.03-0.66 units), enhanced electrical conductivity (by 0.13–0.57 units), increased cation exchange capacity (by 17.0–43.9%), total organic carbon (by 2.21-2.29-fold), raised available phosphorus concentration (by 52.1-96.2%), promoted soil microbial respiration (by 42.9-69.3%), and increased microbial biomass carbon (by 54.2-93.7%). 

Conclusion

In summary, biochar produced from green sugarcane residue and modified with citric acid can significantly enhance soil organic matter, nutrient availability, and biological characteristics in calcareous soils of arid and semi-arid regions.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data is available on request from the authors.

Acknowledgements

The authors would like to thank the Research council of Shahid Chamran University of Ahvaz, Ahvaz,

Iran for the financial support of this research (grant number: SCU.AS1402.449).

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Ahmed, N., Basit, A., Bashir, S., Bashir, S., Bibi, I., Haider, Z., Li, Y. (2021). Effect of acidified biochar on soil phosphorus availability and fertilizer use efficiency of maize (Zea mays L.). Journal of King Saud University-Science33(8), 101635.
Ahmed, N., Deng, L., Wang, C., Shah, Z.-u.-H., Deng, L., Li, Y., Li, J., Chachar, S., Chachar, Z., Hayat, F., Bozdar, B., Ansari, F., Ali, R., Gong, L., & Tu, P. (2024). Advancements in biochar modification for enhanced phosphorus utilization in agriculture. Land, 13(5), 644.
Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., & Shahzad, A. N. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24(14), 12700–12712.
 Alotaibi, K. D., & Schoenau, J. J. (2019). Addition of biochar to a sandy desert soil: Effect on crop growth, water retention, and selected properties. Agronomy, 9, 327.
Anderson, J.P.E. 1982. Soil respiration. In: A.L. and R.H. Mille (Ed.), Methods of Soil Analysis. Part 2, Chemical and Microbiological Properties. American Society of Agronomy. Madison, WI, pp. 831-871.
Arbelaez, L., Breton, Z., Mahdi, C., Pratt, C., & El Hanandeh, A. (2021). Modification of hardwood derived biochar to improve phosphorus adsorption. Environments, 8(5), 41.
Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S., & Khataee, A. (2021). Effects of phosphate-loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12), 1649–1664.
Azimzadeh, Y., Najafi, N., Abdolmaleki, E., & Amirloo, B. (2020). Changes in some chemical properties of various organic materials after converting in biochar and hydrochar. Applied Soil Research7(4), 1-17. (In Persian)
Bonilla, G. A. E., Durrer, A., & Cardoso, E. J. B. N. (2021). Use of compost and phosphate-solubilizing bacteria affect sugarcane mineral nutrition, phosphorus availability, and the soil bacterial community. Applied Soil Ecology, 157, 1-9.
Chandra, S., & Bhattacharya, J. (2019). Influence of temperature and duration of pyrolysis on the property heterogeneity of rice straw biochar and optimization of pyrolysis conditions for its application in soils. Journal of Cleaner Production, 215, 1123–1139.
Chen, M., Zhang, S., Liu, L., Wu, L., & Ding, X. (2021). Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil and Tillage Research, 212, 105060.
Chen, Q., Chen, J., Wang, J., Guo, J., Jin, Z., Yu, P., & Ma, Z. (2019). In situ, high-resolution evidence of phosphorus release from sediments controlled by the reductive dissolution of iron-bound phosphorus in a deep reservoir, southwestern China. Science of the Total Environment, 666, 39-45.
Dai, L., Li, H., Tan, F., Zhu, N., Mingxiong, H., & Hu, G. (2016). Biochar: A potential route for recycling of phosphorus in agricultural residues. GCB Bioenergy, 8(5), 852–858.
Davey, R. S., McNeill, A., Barnett, S., & Gupta, V. (2021). Potential for suppression of Rhizoctonia root rot is influenced by nutrient (N and P) and carbon inputs in a highly calcareous coarse-textured topsoil. Soil Research, 59(4), 329–345.
Domingues R.R., Trugilho P.F., Silva C.A., de Melo I.C.N., Melo L.C., Magriotis Z.M., and Sánchez-Monedero M.A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS one, 12: 0176884.
Du, Z. Y., Wang, Q. H., Liu, F. C., Ma, H. L., Ma, B. Y., & Malhi, S. S. (2013). Movement of phosphorus in a calcareous soil as affected by humic acid. Pedosphere, 23(2), 229–235.
Frene, J. P., Frazier, M., Liu, S., Clark, B., Parker, M., & Gardner, T. (2021). Early effect of pine biochar on peach-tree planting on microbial community composition and enzymatic activity. Applied Sciences, 11(4), 1473.
Gaskin, J., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069.
Ghodszad, L., Reyhanitabar, A., Maghsoodi, M. R., Lajayer, B. A., & Chang, S. X. (2021). Biochar affects the fate of phosphorus in soil and water: A critical review. Chemosphere, 283, 131176.
Gupta, R. K., Vashisht, M., Naresh, R. K., Dhingra, N., Sidhu, M. S., Singh, P. K., Rani, N., Al-Ansari, N., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2024). Biochar influences nitrogen and phosphorus dynamics in two texturally different soils. Scientific Reports, 14(1), 6533.
Hafeez, A., Pan, T., Tian, J., & Cai, K. (2022). Modified biochars and their effects on soil quality: a review. Environments9(5), 60.
Hussain, A. J., Al-Taey, D. K., & Kadhum, H. J. (2023). Biochar application increases the amount of nitrogen, phosphorus, and potassium in the soil: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 1213, No. 1, p. 012023). IOP Publishing.
Jenkinson, D. S. and Ladd J. N. (1981). Microbial biomass in soil measurement and turnover. P415-471, In: Paul E.A., Ladd, J.N. (Ed.). Soil Biochemistry, Marcel Dekker, Inc., NY, pp. 415-471.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019a). Chemical fractions and availability of Zn in a calcareous soil in response to biochar amendments. Journal of Soil Science and Plant Nutrition, 19, 851–864.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2019b). Investigation of physicochemical characteristics of biochars derived from corn residue and sugarcane bagasse in different pyrolysis temperatures. Iranian Journal of Soil and Water Research, 50(3), 725–739. (In Persian)
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2020). Application of biochar changed the status of nutrients and biological activity in a calcareous soil. Journal of Soil Science and Plant Nutrition, 20(2), 450-459.
Karimi, A., Moezzi, A., Chorom, M., & Enayatizamir, N. (2021). Impact of application of sulfur-modified biochar on some biochemical and microbiological attributes of soil. Iranian Journal of Soil and Water Research, 52(9), 2333–2344. (In Persian)
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2020). Characteristics of conocarpus wastes and common reed biochars as a predictor of potential environmental and agronomic applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2021). Investigating the effect of various surface and chemical modification approaches on corn residue and common reed-derived biochar traits. Applied Soil Research, 9(2), 73–86. (In Persian)
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M., & Taghavi, M. (2023). Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Conversion and Biorefinery13(2), 593-601.
Kizito, S., Luo, H., Lu, J., et al. (2019). Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and reduce chemical fertilizer demand. Sustainability, 11, 3211.
Lemming, C., Oberson, A., Magid, J., Bruun, S., Scheutz, C., Frossard, E., & Jensen, L. S. (2019). Residual phosphorus availability after long-term soil application of organic waste. Agriculture, Ecosystems & Environment, 270–271, 65–75. https://doi.org/10.1016/j.agee.2018.10.019
Li, S., Zhang, Y., Yan, W., & Shangguan, Z. (2018). Effect of biochar application method on nitrogen leaching and hydraulic conductivity in a silty clay soil. Soil and Tillage Research, 183, 100–108.
Liu, Q., Jiang, S., Su, X., Zhang, X., Cao, W., & Xu, Y. (2021). Role of biochar modified with ZnCl₂ and FeCl₃ on the electrochemical degradation of nitrobenzene. Chemosphere, 275, 129966.
Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., & Chen, W. (2017). Rice husk biochar impacts soil phosphorus availability, phosphatase activities, and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12–22.
Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F., & Naeem, A. (2022). Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. Journal of Soil Science and Plant Nutrition, 1-10.
Moradi, N., & Karimi, A. (2021). Effect of modified corn residue biochar on chemical fractions and bioavailability of cadmium in contaminated soil. Chemistry and Ecology, 37(3), 252-267.
Moradi, R., Siadat, S., Siahpoosh, A., Bakhshandeh, A., & Moradi Telavat, M. R. (2019). Evaluating quality indices of extracts in green and burnt sugarcane harvesting. Plant Productions42(3), 402-415. (In Persian)
Nazari, S., Rahimi, G., & Nezhad, A. K. J. (2019). Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. Journal of Environmental Chemical Engineering, 7(3), 103064.
Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In: Page, A.L., et al., Eds., Methods of Soil Analysis: Part 2: Chemical and Microbiological Properties, Agronomy Monographs 9, 2nd Edition, ASA and SSSA, Madison, 403-430.
Omara, P., Singh, H., Singh, K., Sharma, L., Otim, F., & Obia, A. (2023). Short-term effect of field application of biochar on cation exchange capacity, pH, and electrical conductivity of sandy and clay loam temperate soils. Technology in Agronomy, 3(1).
Pan, H., Yang, X., Chen, H., Sarkar, B., Bolan, N., Shaheen, S. M., Wu, F., Che, L., Ma, Y., Rinklebe, J., & Wang, H. (2021). Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in contaminated soil. Science of the Total Environment, 763, 144218.
Purnawan, C., Dewi, C. C., Ramadan, B. S., Budihardjo, M. A., Effendi, A. J., & Hidayat, S. (2021). The influence of ZnCl₂ activation on macronutrient NPK adsorption simultaneously using coconut shell biochar for soil fertility improvement. Molekul, 16(1), 75–81.
Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S. S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6(1), 62.
Regmi, P. Moscoso, J. L. G., Kumar, S., Cao, X., Mao, J., and Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 61-69.
Rutigliano, F. A., Romano, M., Marzaioli, R., Baglivo, I., Baronti, S., Miglietta, F. and Castaldi, S. (2014). Effect of biochar addition on soil microbial community in a wheat crop. European Journal of Soil Biology, 60, 9-15.
Saeed, M. F., Jamal, A., Muhammad, D., Shah, G. M., Bakhat, H. F., Ahmad, I., Ali, S., Ihsan, F., & Wang, J. (2021). Optimizing phosphorus levels in wheat grown in a calcareous soil with the use of adsorption isotherm models. Journal of Soil Science and Plant Nutrition, 21, 81–94.
Sorkheh, S., Moezzi, A., Moradi, N., & Karimi, A. (2024). Modified biochar application effects on soil chemical properties and nutrients uptake in sugarcane cv. CP73-21. Iranian Journal of Soil and Water Research55(9), 1521-1536.
Safian, M., Motaghian, H., & Hosseinpur, A. (2020). Effects of sugarcane residue biochar and P fertilizer on P availability and its fractions in a calcareous clay loam soil. Biochar, 2(3), 357–367.
Shokuhifar, Y., Ghahsareh, A. M., Shahbazi, K., Tehrani, M. M., & Besharati, H. (2023). Biochar and wheat straw affecting soil chemistry and microbial biomass carbon countrywide. Biomass Conversion and Biorefinery, 13(6), 5407-5417.
Singh, B., Camps-Arbestain, M., & Lehmann, J. (Eds.). (2017). Biochar: A guide to analytical methods. CSIRO Publishing.
Singh, S., Swami, S., Gogoi, J., Dwivedi, D. K., Turkar, G. P., Tamang, B., & Borah, S. K. (2023). Effect of biochar-mediated treatments on the improvement of soil acidity, crop performance, and soil properties. Ama, Agricultural Mechanization in Asia, Africa & Latin America, 54, 13575–13603.
Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145.
Thies, J. E., Rillig, M. C., & Graber, E. R. (2019). Biochar effects on the abundance, activity, and diversity of the soil biota. In Biochar for Environmental Management (2nd ed., pp. 359–422). Routledge.
Wahba, M., Fawkia, L. A. B. İ. B., & Zaghloul, A. (2019). Management of calcareous soils in arid region. International Journal of Environmental Pollution and Environmental Modelling, 2(5), 248-258.
Wang, L., Ok, Y. S., Tsang, D. C. W., Alessi, D. S., Rinklebe, J., Wang, H., Mašek, O., Hou, R., O’Connor, D., & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns, and implications for soil amendment. Soil Use and Management, 36, 358–386.
Wen, E., Yang, X., Chen, H., Shaheen, S. M., Sarkar, B., Xu, S., & Wang, H. (2021). Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 407, 124344.
Wu, L., Zhang, S., Wang, J., & Ding, X. (2020). Phosphorus retention using iron (II/III) modified biochar in saline-alkaline soils: Adsorption, column, and field tests. Environmental Pollution, 261, 114223.
Wu, L., Zheng, H., & Wang, X. (2021). Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. Journal of Environmental Management, 294, 112993.
Yang, D. I. N. G., Yunguo, L. I. U., Shaobo, L. I. U., Huang, X., Zhongwu, L. I., Xiaofei, T. A. N., & Lu, Z. H. O. U. (2017). Potential benefits of biochar in agricultural soils: a review. Pedosphere, 27(4), 645-661.
Zhang, L., Xu, M., Liu, Y., Zhang, F., Hodge, A., & Feng, G. (2016). Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist, 210(3), 1022–1032.
Zhang, Y., Zhao, C., Chen, G., Zhou, J., Chen, Z., Li, Z., & Chen, Y. (2020). Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide–modified straw biochar in an arsenic-contaminated soil. Environmental Science and Pollution Research27, 23761-23768.
Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6), 1169–1179.