ارزیابی اثرات زیست‌محیطی معدن آگاراک بر کیفیت آب رودخانه ارس: اعتبار سنجی نتایج فیزیکوشیمیایی با استفاده از شاخص‌های بیولوژیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه مهندسی عمران، دانشکده عمران و محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

2 استادیار دانشکده مهندسی عمران، آب و محیط زیست دانشگاه شهید بهشتی

3 دانشجوی دکتری، دانشکده مهندسی عمران، آب و مهندسی محیط‌زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

آگاهی از کیفیت آب رودخانه‌ها برای برنامه‌ریزی و حفاظت منابع آبی ضروری است. کفزیان، به‌ویژه درشت بی‌مهرگان کفزی، به‌طور دقیق برای شرایط کیفی آب را نشان می‌دهند. در این پژوهش برای محاسبه شاخص‌های کیفی IRWQISC و NSFWQI و زیستی BMWP، ASPT، FBI و شانون وینر، 6 ایستگاه در مسیر رودخانه ارس انتخاب شد (3 ایستگاه قبل و 3 ایستگاه بعد از شهر آگاراک). نمونه‌برداری‌ها در پاییز 1401 انجام شد و پارامترهای مختلف مانند کدورت، دمای آب، اکسیژن محلول، نیترات، فسفات کل، کلیفرم مدفوعی، BOD5، EC و PH اندازه‌گیری شد. درمجموع 21 گروه از کفزیان شناسایی شد و ایستگاه 2 با 17 گروه زیستی بیشترین تنوع و ایستگاه 4 با 7 گروه کمترین تنوع را داشت. نتایج NSFWQI نشان داد که آب ایستگاه 1 دارای کیفیت خوب و بقیه ایستگاه‌ها دارای کیفیت متوسط است. بر اساس IRWQISC، ایستگاه‌های 1 و 3 دارای کیفیت متوسط و بقیه ایستگاه‌ها کیفیت نسبتاً بد دارند. شاخص BMWP کیفیت ایستگاه‌های اول تا سوم را متوسط و ایستگاه‌های چهارم تا ششم را بد ارزیابی کرد. شاخص ASPT نشان داد که ایستگاه‌های اول، دوم، پنجم و ششم دارای آلودگی متوسط احتمالی و ایستگاه‌های سوم و چهارم دارای آلودگی شدید احتمالی هستند. شاخص HFBI کیفیت آب را در ایستگاه‌های اول، سوم، چهارم و پنجم خوب، ایستگاه دوم ضعیف و ایستگاه ششم متوسط ارزیابی کرد. شاخص شانون - وینر نیز کاهش کیفیت آب از ایستگاه اول به سوم و افزایش آن از ایستگاه سوم به بعد را نشان داد. تحلیل ضرایب همبستگی نشان‌دهنده همبستگی مثبت بین کدورت، BOD، نیترات و فسفات بود. این نتایج نشان‌دهنده آلودگی ایستگاه‌های بعد از آگاراک و کاهش کیفیت آب در این ناحیه به دلیل وجود یک کانون آلاینده محیطی در آگاراک است که باعث تغییر جامعه زیست‌مندان کفزی و شرایط اکولوژیکی منطقه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Environmental Impact Assessment of the Agarak Mine on the Water Quality of the Aras River: Validation of Physicochemical Results Using Biological Indices

نویسندگان [English]

  • Nadia Hassanloo 1
  • Pardis Alipour 1
  • Ali Moridi 2
  • Reza Khalili 3
1 Master Student, Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Shahid Beheshti University, Tehran, Iran.
2 Civil, Water and Environmental Engineering Faculty, Shahid Beheshti University
3 Ph.D. Student, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran
چکیده [English]

Understanding river water quality is essential for the planning and protection of water resources. Benthic organisms, especially macroinvertebrates, serve as accurate indicators of water quality conditions. In this study, six stations along the Aras River—three upstream and three downstream of the city of Agarak—were selected to assess water quality using the IRWQISC and NSFWQI indices, as well as biological indices including BMWP, ASPT, FBI, and Shannon-Wiener. Sampling was conducted in the autumn of 2022, and various parameters such as turbidity, water temperature, dissolved oxygen, nitrate, total phosphate, fecal coliform, BOD₅, EC, and pH were measured. A total of 21 macroinvertebrate taxa were identified, with Station 2 showing the highest diversity (17 taxa) and Station 4 the lowest (7 taxa). According to the NSFWQI, water quality at Station 1 was rated as good, while the remaining stations showed moderate quality. The IRWQISC index classified Stations 1 and 3 as having moderate quality and the others as relatively poor. The BMWP index rated the first three stations as moderate and the last three as poor. The ASPT index indicated probable moderate pollution at Stations 1, 2, 5, and 6, and probable severe pollution at Stations 3 and 4. The HFBI rated water quality as good at Stations 1, 3, 4, and 5, poor at Station 2, and fair at Station 6. The Shannon-Wiener index revealed a decline in water quality from Station 1 to 3, followed by an improvement downstream. Correlation analysis showed positive relationships between turbidity, BOD, nitrate, and phosphate. These results indicate pollution downstream of Agarak and a decrease in water quality likely caused by a local environmental pollution source, which has altered the macroinvertebrate community and ecological conditions of the area.

کلیدواژه‌ها [English]

  • Aras River
  • Agarak Mine
  • Biological Index
  • IRWQIsc
  • NSFWQI

EXTENDED ABSTRACT

 

Introduction

Rivers play a crucial role in supplying water for various activities, including agriculture, industry, drinking water, and electricity generation. Awareness of water quality is a critical need in water resource planning and development. Given the diversity of water pollutants, it is not feasible to provide a single standard for assessing water quality, and therefore, various indices have been developed to evaluate water quality.One of the most widely used and simple water quality indices worldwide is the NSFWQI (National Sanitation Foundation Water Quality Index), which was first introduced in the 1970s with the support of the U.S. National Sanitation Foundation. This index evaluates nine parameters—pH, DO (Dissolved Oxygen), TDS (Total Dissolved Solids), nitrate, temperature, phosphorus, BOD (Biochemical Oxygen Demand), turbidity, and fecal coliform—using a weighting factor. In Iran, considering the climatic conditions and water resource challenges, the Iran Surface Water Quality Index (IRWQISC) has been developed, which is an integrated index derived from NSFWQI and BCEWQI (British Columbia Water Quality Index) that provides a quantitative assessment of water quality.Another important method for estimating water quality is the assessment of biological indices. These methods are diverse and involve the direct study of plants and animals that inhabit the natural environment to estimate water quality. Benthic organisms, particularly macroinvertebrates, accurately and sensitively reflect the water quality conditions in any given area within aquatic ecosystems. They can be used in the assessment of aquatic ecosystems and to determine trends in water quality changes.

Methodology

In this study, parameters including EC, pH, turbidity, water temperature, dissolved oxygen, nitrate, total phosphate, fecal coliform, and BOD5 were measured at six stations using a portable Hack multi-parameter device. The selected stations were located along the Aras River within East Azerbaijan Province. Sampling was conducted in the autumn of 2022. After collecting the samples, they were placed in ice-containing containers and transported to the laboratory. For macroinvertebrate sampling, a Surber sampler with an area of 0.09 square meters was used. At each station, three separate macroinvertebrate samples were sieved using a 0.5 mm mesh sieve, and the contents of the sieves were separately preserved in containers with 96% alcohol and Rose Bengal (at a concentration of 1:1000). The samples were then transferred to the laboratory for sorting and identification. In the laboratory, each sample was again sieved using a 0.5 mm mesh sieve, and the macroinvertebrates were separated. The coordinates of each station and its elevation above sea level were recorded using a GPS device. Subsequently, the water quality indices IRWQIsc and NSFWQI, along with the biological indices BMWP, ASPT, FBI, and Shannon-Wiener, were measured.

Results and Discussion

In this study, to assess the water quality and biological status of the Aras River, water quality parameters were collected during the autumn from six stations along the river. These were evaluated using Pearson's correlation coefficient and the water quality indices IRWQISC and NSFWQI, as well as the biological indices BMWP, ASPT, FBI, and Shannon-Wiener. The results from the IRWQISC index indicated relatively poor water quality across all stations, while the NSFWQI index suggested moderate quality for the river. Moreover, the biological indices BMWP, ASPT, FBI, and Shannon-Wiener pointed to pollution at the station downstream of Agarak and a decrease in water quality at this station compared to others. The findings from the biological assessments revealed the presence of an environmental pollutant source in the Agarak area, which has led to changes in the macroinvertebrate community and ecological conditions in the area downstream of Agarak.

Author Contributions

Ali Moridi and Reza Khalili conceived of the presented idea, developed the theory and performed the computations.and carried out the experiment. Nadia Hassanloo verified analytical methods and performed the computations. Pardis Alipour investigated and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript, but Ali Moridi worte the final version of manuscript. All authors have read and agreed to the published version of the manuscript. All authors contributed according their name place to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data is available on reasonable request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

 

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

 

Armitage, P. D., Moss, D., Wright, J. F., & Furse, M. T. (1983). The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted   running-water sites. Water Research, 17(3), 333–347.
Bhadrecha, M. H., Khatri, N., & Tyagi, S. (2016). Rapid integrated water quality evaluation of     Mahisagar river using benthic macroinvertebrates. Environmental monitoring and assessment,       188(4), 254.
Cristable, R. M., Nurdin, E., & Wardhana, W. (2020, March). Water quality analysis of Saluran Tarum    Barat, West Java, based on National Sanitation Foundation-Water Quality Index (NSF-WQI).     In IOP Conference Series: Earth and Environmental Science (Vol. 481, No. 1, p. 012068). IOP Publishing.
Czerniawska-Kusza, I. (2005). Comparing modified biological monitoring working party score system     and several  biological indices based on macroinvertebrates for water-quality assessment.           Limnologica, 35(3), 169- 176.
Dadkhah Tehrani, M., Karimi Darmian, S., Moridi, A., & khalili, R. (2023). Evaluation of water quality   of Chalus River based on IRWQIsc and NSFWQI water quality index. Journal of       Environmental Science Studies, 8(3),7064-7072. (In Persian).
Delbari, F., Rezaei Tavabe, K., Mirvaghefi, A., Lahijanzadeh, A., Bagherzadeh Karimi, M., &     Salamroodi, E. (2022).Evaluation of water quality of Tajan River using IRWQIsc index.     Aquaculture Sciences, 10(2), 83-98. (In Persian).
Darvishi, P., javanshir, A., Eagderi, S., nasri, M. (2023) Pollution monitoring of Khorram-Rud River -      Lorestan Province using macroinvertebrates as biological indicators. J. Aqua. Eco  13 (1) :78- 93. (In Persian).
Ebrahimi, I., Fathi, P., Ghodrati, F., Naderi Jelodar, M., & Pirali, A. R. (2018). Assessment of Tajan         River water quality with the use of biological and quality indicators. Iranian Scientific Fisheries Journal, 26(5), 139 151. (In Persian).
Ghorbanzadeh Zafarani, S. G., Hossaini Tayefeh, F., & Izadian, M. (2022). Quality Classification of        Karaj River Using Macrobenthic Biotic Indices. Environmental Researches, 13(25), 19-32. (In   Persian).
Giao, N. T., Dien, N. T. C., Nguyen, H. T., Nhu, T. N., Mi, L. T. D., & Nhien, H. T. H. (2024).    Evaluating relationship between surface water quality and zooplankton diversity in coastal        areas of Tien Giang Province,Vietnam. Journal of Applied Sciences and Environmental Management, 28(3), 841–851.
Gupta, N., Pandey, P., & Hussain, J. (2017). Effect of physicochemical and biological parameters on        the quality of  river water of Narmada, Madhya Pradesh, India. Water Science, 31(1), 11–23.
Hara, J., Mamun, M., & An, K. G. (2019). Ecological river health assessments using chemical parameter model and the index of biological integrity model. Water, 11(8), 1729.
Hawkes, H. A. (1997). Origin and development of the biological monitoring working party score system. Water Research, 32(3), 964–968.
Hilsenhoff, W. L. (1988). Rapid field assessment of organic pollution with a family-level biotic index.     Journal of the  North American Benthological Society, 7(1), 65–68.
Houshmand, S., & Agdarnajad, A. (2021). Evaluation of Karun River water quality based on NSFWQI    and IRWQIsc indices and determination of effective parameter weights using cluster analysis        and hierarchical analysis. Eco-Wetland Biology, 13(3), 47–60. (In Persian).
Khalili, R., Montaseri, H., & Motaghi, H. (2021). Evaluation of water quality in the Chalus River using    the statistical analysis and water quality index (WQI). Water and Soil Management and    Modelling, 1(3), 38- 52. (In Persian).
Khodamoradi Vatan, N., Mazaheri, M., Mohammad vali samani, J., & Razavi Toosi, S. L. (2023).            Comparative  evaluation and comparison of quality monitoring network of Iranʼs rivers with         selected countries. Iranian Journal of Soil and Water Research, 54(5), 737-751. (In Persian).
Larijani, S., Kavian, A., & Ziaei, A. N. (2023). Water Quality of HARAZ River by Using the Sanitation,  Pollution,  weight and Social Accounting Water Quality index (Case study: Panjab to upstream of Haraz dam). Irrigation and Water Engineering, 13(13), 369-387. (In Persian).
Mahmoudifard, A., Imanpoor Namin, J., Sharifinia, M., Allaf Noverian, H., Gholami Dashtaki, K.,          (2015). Use of Benthic invertebrates population structure and distribution pattern for biological  monitoring and water quality assessment in Sharhrud River (Qazvin province). Journal of Utilization and Cultivation of Aquatics, 3(4), 91-108. (In Persian).
Malvandi, H., Moghanizade, R., & Abdoli, A. (2018). Assessment of water quality in the Dehbar River    using  biological indicators. Journal of Animal Environment, 10(1), 381–390. (In Persian).
Mazlomi, M., Hatami, A. A., Moridi, A. A., & Khalili, R. (2023). Sensitivity assessment of the National   Sanitation  Foundation Water Quality Index (NSFWQI) and IRan Water Quality Index for        Surface Water Resources (IRWQIsc) on the water quality of the Neka River. Journal of Water           and Irrigation Management, 13(3), 581–592. (In Persian).
Nasiyev, B., Vassilina, T., Zhylkybay, A., Shibaikin, V., & Salykova, A. (2021). Physicochemical and     biological indicators of soils in an organic farming system. The Scientific World          Journal, 2021(1). 9970957.
Nezhadafzali, K., & Bayatani, F. (2024). Water quality areas of the Karun River based on NSFWQI         quality index and using geographic information system. Journal of Environmental Science            Studies, 9(2), 8251–8264. (In Persian).
Nosrati, K., Derafshi Khab, H., Gharehchahi, S., & Gharehchahi, K. (2011). Evaluation of surface water   quality in the Haraz-Gharesu watershed using multivariate statistical techniques. Earth Science     Research Journal, 2(1). (In Persian).
Paknejad Motaki, H., Faraji Rad, A., (2010). The hydropolitic of Aras river border and its effect on the     security of  Ardabil province., Territory, 7(28), 79-96. (In Persian).
Priyono, A., Badriyah Rushayati, S., & Bagus Sujati, A. (2021). Water quality characteristics of   Ciliwung River  at Bogor Botanical Garden Segment, Bogor. International Journal of Energy  and Environmental Science, 6(5),122.
Rocha, F. C., Andrade, E. M., & Lopes, F. B. (2015). Water quality index calculated from biological,       physical,  and chemical attributes. Environmental Monitoring and Assessment, 187(4), 1–15.
Salem, T. A. (2021). Changes in the physicochemical and biological characteristics in the lentic and         lotic waters  of  the Nile River. The Egyptian Journal of Aquatic Research, 47(1), 21–27.
Shyu, G. S., Cheng, B. Y., Chiang, C. T., Yao, P. H., & Chang, T. K. (2011). Applying factor analysis      combined with kriging and information entropy theory for mapping and evaluating the stability            of groundwater quality variation in Taiwan. International Journal of Environmental Research          and Public Health, 8(4), 1084–1097.
Soleimani Babadi, Fatemeh, & Sabz Alipour, Sima. (2020). The study of water quality in naseri watland  by using of IRWQI and NSFWQI indexes. JOURNAL OF WETLAND ECOBIOLOGY, 12(45), 71-86. (In Persian).
Uddin, M. G., Nash, S., & Olbert, A. I. (2021). A review of water quality index models and their use        for assessing surface water quality. Ecological Indicators, 122, 107218.
Wu, Z., Wang, X., Chen, Y., Cai, Y., & Deng, J. (2018). Assessing river water quality using water           quality index in Lake Taihu Basin, China. Science of the Total Environment, 612, 914–922.
Zefrehei, A. P., & Ebrahimi, E. (2016). Assessing the water quality of Zayandeh Rud River affected by    drought period using BMWP, ASPT, and Hilsenhoff biological indices. Journal of Utilization          and Cultivation of Aquatics, 4(4), 71-85. (In Persian).
Zhou, Q., Guo, H., & Chen, G. (2021). Ecological evaluation of river water quality using a hierarchical    biotic index. Water Quality Research Journal, 35(4), 12–25.