بررسی پارامترهای کمیت-شدت (Q/I) پتاسیم در خاک تحت تأثیر افزودن مواد معدنی و اسید هیومیک

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

چکیده

این مطالعه با هدف بررسی تأثیر کاربرد بنتونیت، ورمی‌کولیت و زئولیت اشباع شده با سدیم و کلسیم با و بدون اسید هیومیک بر پارامترهای رابطه کمیت-شدت پتاسیم در یک خاک لومی بر اساس طرح کاملاً تصادفی انجام گرفت. اصلاح کننده‌های اشباع ‌شده با کلسیم و سدیم به طور جداگانه به مقدار 1 و 2 درصد جرمی به نمونه‌های‌ 400 گرمی خاک اضافه شدند. برای هر تیمار حاوی اصلاح کننده معدنی، دو سطح کاربرد اسید هیومیک (0 و 5/0 درصد جرمی) در نظر گرفته شد. پس از پایان انکوباسیون دو ماهه، آزمایش‌های همدمای جذب با استفاده از محلول‌های همدما حاوی غلظت‌های 3/0، 6/0، 2/1، 8/1، 4/2، 7/2 و 3 ‌میلی‌مولار کلرید پتاسیم و 10 ‌میلی‌مولار کلرید کلسیم انجام شد و پارامترهای Q/I به دست آمدند. بیشترین و کمترین مقدار پارامتر AReK به ترتیب مربوط به تیمارهای 1% Ca-Z و 2% Na-B + 0.5% HA بود. همبستگی منفی و معنی‌داری بین AReK و PBCK و CEC وجود داشت. پارامتر PBCK در دامنه 1/174-4/59 (cmolc kg-1) (mol L-1)-1/2 متغیر بود و بیشترین و کمترین مقدار به ترتیب در تیمارهای 2% Na-Z + 0.5% HA و 1% Ca-B به دست آمد. بیشترین مقدار K0، KX و KL در تیمار 1% Na-Z + 0.5% HA به دست آمد. انرژی آزاد تبادل پتاسیم در تیمارهای حاوی اصلاح کننده‌های سدیمی همراه با اسید هیومیک نسبت به سایر تیمارها بزرگتر بود. بیشترین و کمترین مقدار ضریب انتخاب‌پذیری گاپون به ترتیب مربوط به تیمارهای 2% Na-Z + 0.5% HA و 1% Ca-B بود. تیمارهای 1% Ca-B، 2% Ca-B، 1% Ca-V و 1% Ca-Z موجب کاهش PBCK نسبت به شاهد شدند. این تیمارها قدرت کمتری نسبت به خاک شاهد در تنظیم شدت پتاسیم به هنگام تخلیه پتاسیم محلول دارند. بنابراین، می‌توانند برای تأمین سریع پتاسیم برای گیاه سودمند باشند، اما در تأمین پایدار آن، ضعیف‌تر از خاک تیمار نشده عمل می‌کنند.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the quantity-intensity (Q/I) parameters of potassium in soil influenced by the addition of minerals and humic acid

نویسندگان [English]

  • Shabnam Jalilian
  • Faranak Ranjbar
Department of Soil Science, Faculty of Agriculture, Razi University, Kermanshah, Iran
چکیده [English]

This study was conducted to investigate the effect of using bentonite, vermiculite and zeolite saturated by sodium and calcium with and without humic acid on the parameters of potassium quantity-intensity relationship in a loamy soil based on a completely random design. The amendments saturated by calcium and sodium were added separately to 400-g soil samples at the rate of 1% and 2% (w/w). For each treatment containing mineral amendment, two levels of humic acid application (0 and 0.5% w/w) were considered. After the end of a two-month incubation, adsorption isotherm tests were performed using solutions containing concentrations of 0.3, 0.6, 1.2, 1.8, 2.4, 2.7, and 3 mM potassium chloride and 10 mM calcium chloride and Q/I parameters were obtained. The highest and lowest values of AReK were related to 1% Ca-Z and 2% Na-B + 0.5% HA treatments, respectively. There was a negative and significant correlation between AReK and PBCK and CEC. The PBCK varied in the range of 59.4-174.1 (cmolc kg-1) (mol L-1)-1.2 and the highest and lowest values were obtained in 2% Na-Z + 0.5% HA and 1% Ca-B treatments, respectively. The highest values of K0, KX, and KL were obtained in 1% Na-Z + 0.5% HA treatment. The free energy of potassium exchange in treatments containing amendments saturated by sodium along with humic acid was greater than other treatments. The highest and lowest values of Gapon selectivity coefficient were obtained in 2% Na-Z + 0.5% HA and 1% Ca-B treatments, respectively. The PBCK decreased in 1% Ca-B, 2% Ca-B, 1% Ca-V, and 1% Ca-Z treatments compared to the control. These treatments have less power than the control in regulating the intensity factor during the discharge of soluble potassium. Therefore, they can be beneficial for the quick supply of potassium to the plant. However, they are weaker than the untreated soil in maintaining and providing potassium in the long term.

کلیدواژه‌ها [English]

  • Gapon selectivity coefficient
  • Labile potassium
  • Potassium potential buffering capacity
  • Zeolite

EXTENDED ABSTRACT

 

Background and Purpose

Knowledge of soil potassium status is very important in plant nutrition management. The thermodynamic approach commonly used to describe and evaluate the soil potassium supply capacity is the quantity-intensity (Q/I) isotherm. This relationship provides useful information about the soil fertility status, including the potential buffering capacity of potassium (PBCK), plant usable potassium or labile potassium (KL), potassium adsorbed in the surface places of minerals (non-specific) that is easily exchangeable (K0) and potassium adsorbed in the edge and wedge sites of minerals (specific) that is hardly exchangeable (KX). This study was conducted to investigate the effect of using bentonite, vermiculite and zeolite saturated by sodium and calcium with and without humic acid on the parameters of potassium quantity-intensity relationship in a loamy soil based on a completely random design.

Materials and Methods

The soil sample was divided into 50 sub-samples of 400 grams: 48 sub-samples were experimental treatments with two replications, and 2 sub-samples were considered as controls (without adding amendments). The amendments saturated by calcium and sodium were added separately to 400-g soil samples at the rate of 1% and 2% (w/w) (4 and 8 grams, respectively). For each treatment containing mineral amendment, two levels of humic acid application (0 and 0.5% w/w) were considered. The control and treated samples were moistened almost as much as the field capacity and placed in an incubator at a temperature of 25°C for two months. After the incubation, adsorption isotherm tests were performed using solutions containing concentrations of 0.3, 0.6, 1.2, 1.8, 2.4, 2.7, and 3 mM potassium chloride and 10 mM calcium chloride and Q/I parameters were obtained.

Findings

The highest and lowest values ​​of AReK were related to 1% Ca-Z and 2% Na-B + 0.5% HA treatments, respectively. There was a negative and significant correlation between AReK and PBCK and CEC. The PBCK varied in the range of 59.4-174.1 (cmolc kg-1) (mol L-1)-1.2 and the highest and lowest values ​​ were obtained in the treatments of 2% Na-Z + 0.5% HA and 1% Ca-B, respectively. The parameters K0, KX, and KL were in the range of 0.14-0.26, 0.05-0.14, and 0.22-0.40 cmolc kg-1. The highest values ​​of these parameters were obtained in the treatment of 1% Na-Z + 0.5% HA. The free energy of potassium exchange in treatments containing amendments saturated by sodium along with humic acid was greater than other treatments. The highest and lowest values ​​of Gapon selectivity coefficient were obtained in 2% Na-Z + 0.5% HA and 1% Ca-B treatments, respectively. The PBCK decreased in 1% Ca-B, 2% Ca-B, 1% Ca-V, and 1% Ca-Z treatments compared to the control. These treatments have less power than the control in regulating the intensity factor during the discharge of soluble potassium. Therefore, they can be beneficial for the quick supply of potassium to the plant. However, they are weaker than the untreated soil in maintaining and providing potassium in the long term.

Conclusion  

Treatments containing amendments saturated by sodium in companion with humic acid increased the CEC and the potential buffering capacity of potassium. Therefore, these modifiers can be used for the long-term supply of potassium needed by the plant in soils with light texture or depleted of potassium.

Author contributions

Conceptualization, S.J. and F.R.; Methodology, F.R.; Software, S.J. and F.R.; Validation, F.R.; Formal analysis, S.J.; Investigation; S.J. and F.R.; Resources, F.R.; Data curation, S.J. and F.R.; Writing‒original draft preparation, F.R.; Writing‒review editing, F.R.; Visualization, S.J. and F.R.; Supervision, F.R.; Project administration, F.R.; Funding acquisition, F.R. All authors have read and agreed to the published version of the manuscript.

Data availability statement

The datasets analyzed during the current study can be available from the corresponding author on reasonable request.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct. This article does not contain any studies with human participants or animals.

Conflict of interest

The author declares no conflict of interest.

 

 

Abdi, S., Tajabadi Pour, A., & Hamidpour, M. (2018). Chemical forms and quantity-intensity relationships of potassium in Rafsanjan and Anar lands under pistachio trees. Pistachio Science and Technology, 3(5), 22–38. (In Persian)
Bangroo, S. A., Kimani, N. A., Bhat, M.A., Wani, J. A., Iqbal, A. M., Dar, Z. A., Mahdi, S. S., & Malik, A. (2021). Potassium isotherm portioning based on modified quantity-intensity relation and potassium buffering characterization of soils of north India. Journal of Plant Nutrition and Soil Science, 184(1), 112–122. https://doi.org/10.1002/jpln.202000406.
Beckett, P. H. T. (1964). Studies on soil potassium: II. The ‘immediate’ Q/I relations of labile potassium in the soil. Journal of Soil Science, 15(1), 9–23. https://doi.org/10.1111/j.1365-2389.1964.tb00240.x.
Beckett, P. H. T. (1972). Critical activity ratio. Advances in Agronomy, 24, 379–412. https://doi.org/10.1016/S0065-2113(08)60639-2.
Bilias, F., & Barbayiannis, N. (2019). Potassium availability: An approach using thermodynamic parameters derived from quantity-intensity relationships. Geoderma, 338, 355–364. https://doi.org/10.1016/j.geoderma.2018.12.026.
Blume, H. -P., Brümmer, G. W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., & Wilke, B. -M. (2015). Scheffer/Schachtschabel Soil Science. Berlin: Springer. https://doi.org/10.1007/978-3-642-30942-7.
Bower, C. A., Reitmeir, R. F., & Fireman, M. (1952). Exchangeable cation analysis of saline and alkali soils. Soil Science, 73(4), 251–262. https://doi.org/10.1097/00010694-195204000-00001.
Dumat, C., Quiquampoix, H., & Staunton, S. (2000). Adsorption of cesium by synthetic clay-organic matter complexes: effect of the nature of organic polymers. Environmental Science and Technology, 34(14), 2985–2989. https://doi.org/10.1021/es990657o.
Evangelou, V. P., & Karathanasis, A. D. (1986). Evaluation of potassium quantity-intensity relationships by a computer model employing the Gapon equation. Soil Science Society American Journal, 50(1), 58–62. https://doi.org/10.2136/sssaj1986.03615995005000010011x.
Gee, G. W., & Bauder J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, part 1: Physical and mineralogical methods (pp. 383–411). Madison: American Society of Agronomy. https://doi.org/10.2136/sssabookser5.1.2ed.c15.
Gosh, S., Banerjee, S., Mukherjee, A., & Bhattacharyya, P. (2023). Appraise potassium chemistry and distribution patterns in tailing soil, India: Through quantity-intensity relations and multi model statistical methods. Chemosphere, 335, 139184. https://doi.org/10.1016/j.chemosphere.2023.139184.
Hamed, M. H., & Abu Zeid Amin, A. E. (2017). Evaluation of potassium quantity-intensity in some soils of El-Dakhla Oasis, New Valley, Egypt. Alexandria Science Exchange Journal, 38(1), 112–119.‏ https://doi.org/10.21608/asejaiqjsae.2017.2367.
Harada Y., & Inoko A. (1975). Cation-exchange properties of soil organic matter. Soil Science and Plant Nutrition, 21(4), 361–369. https://doi.org/10.1080/00380768.1975.10432651.
Islam, A., Karim, A. J. M. S., Solaiman, A. R. M., Islam, M. S., & Saleque, M. A. (2017). Eight-year long potassium fertilization effects on quantity/intensity relationship of soil potassium under double rice cropping. Soil Tillage and Research, 169, 99–117. https://doi.org/10.1016/j.still.2017.02.002.
Jalai, M. (2006). Kinetics of non-exchangeable potassium release and availability in some calcareous soils of western Iran. Geoderma, 135, 63-71. https://doi.org/10.1016/j.geoderma.2005.11.006
Jones, J. B. (2001). Laboratory guide for conducting soil tests and plant analysis. Boca Raton: CRC Press. https://doi.org/10.1201/9781420025293
Khan, S. A., Mulvaney, R. L., & Ellsworth, T. R. (2014). The potassium paradox: implications for soil fertility, crop production and human health. Renewable Agriculture and Food Systems, 29(1), 3–27. https://doi.org/10.1017/S1742170513000318.
Lalitha, M., & Dhakshinamoorthy, M. (2015). Quantity-intensity characteristics of potassium (K) in relation to potassium availability under different cropping systems in alluvial soils. African Journal of Agricultural Research, 10(19), 2097–2113. https://doi.org/10.5897/AJAR2014.8947.
Lin, J., Yanhui, Zh., & Zhiliang, Zh. (2011). Evaluation of sediment cropping with active barrier systems (ABS) using calcite/zeolite mixtures to simultaneously manage phosphorus and ammonium release. Science of Total Environment, 409(3), 638–646. https://doi.org/10.1016/j.scitotenv.2010.10.031.
Loeppert, R. H. & Sparks, D. L. (1996). Carbonate and gypsum. In D. L. Sparks (Ed.), Methods of soil analysis, part 3: Chemical methods (pp. 437–475). Madison: Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c15.
Malakouti, M. J., & Homaee, M. (2003). Soil fertility of arid and semi arid regions: Difficulties and solutions. Tehran: Tarbiat Modares University. (In Persian)
Martin, H. W., & Sparks, D. L. (1985). On the behavior of non- exchangeable potassium in soils. Communications in Soil Science and Plant Analysis, 16(2), 133–162. https://doi.org/10.1080/00103628509367593.
McLean, E. O. (1976). Exchangeable K levels for maximum crop yields on soils of different cation exchange capacities. Communication in Soil Science and Plant Analysis, 7(9), 823–838. https://doi.org/10.1080/00103627609366690.
Mosapour, M., Forghani, A., & Sabouri, A. (2020). Evaluating the correlation of soil characteristics with Potassium Q/I curve parameters in some calcareous soils of Lorestan province. Journal of Water and Soil, 34(2), 379–391. https://dorl.net/dor/20.1001.1.20084757.1399.34.2.10.0. (In Persian)
Panda, R., & Patra, S. K. (2018). Quantity-intensity of potassium in representative coastal soils of eastern India. Geoderma, 332, 198–206. https://doi.org/10.1016/j.geoderma.2018.07.014.
Rani, K., Datta, A., Jat, H. S., Choudhary, M., Sharma, P. C., & Jat, M. L. (2023). Assessing the availability of potassium and its quantity-intensity relations under long term conservation agriculture based cereal systems in North-West India. Soil & Tillage Research, 228, 105644. https://doi.org/10.1016/j.still.2023.105644.
Ranjbar, R., Sepehr, E., Samadi, A., Barin, M., & Dovlati, B. (2019). Soil potassium forms and quantity-intensity parameters of soil potassium and its correlation with some soil properties of tobacco-growing region in northwest of Iran. Journal of Water and Soil Conservation, 26(2), 195–210. https://doi.org/10.22069/jwsc.2019.15461.3070. (In Persian)
Rezaei, M., Movahedi Naeini, S. A. R., & Khormali, F. (2011). Potassium quantity-intensity (Q/I) curves for two soils as affected by zeolite addition. Applied Field Crops Research, 24(2), 27–34. (In Persian)
Rowell, D. L. (1994). Soil science: Methods and applications. Oxfordshire: Routledge. https://doi.org/10.4324/9781315844855.
Samadi, A. (2006). Potassium exchange isotherms as a plant availability index in selected calcareous soils of western Azarbaijan province, Iran. Turkish Journal of Agriculture and Forestry, 30(3), 213–222.
Samadi, A. (2012). Impact of continuous sugar beet cropping on potassium quantity-intensity parameters in calcareous soils. Journal of Plant Nutrition, 35(8), 1154–1167. https://doi.org/10.1080/01904167.2012.676128.
Samavati, M., & Eskandari, B. (2013). Potassium quantity-intensity ratio and selected properties of some soils in Bahar area. Journal of Water and Soil Science, 17(63), 203–213. http://dorl.net/dor/20.1001.1.24763594.1392.17.63.17.5. (In Persian)
Sarkar, G. K., Chattopadhyay, A. P., Sanyal, S. K. (2013). Release pattern of non-exchangeable potassium reserves in Alfisols, Inceptisols and Entisols of West Bengal, India. Geoderma, 207–208, 8–14. https://doi.org/10.1016/j.geoderma.2013.04.029.
Sharma, V., Sharma, S., Arora, S., & Kumar, A. (2012). Quantity-intensity relationships of potassium in soils under some guava orchards on marginal lands. Communications in Soil Science and Plant Analysis, 43(11), 1550–1562. https://doi.org/10.1080/00103624.2012.675387.
Sparks, D. L., Singh, B., Siebecker, M. G. (2023). Environmental Soil Chemistry, 3rd edition, Academic Press. https://doi.org/10.1016/C2022-0-03090-7.
Strawn, D. G., Bohn, H. L., & O'Connor, G. A. (2020). Soil chemistry. Hoboken: Wiley-Blackwell.
Subba Rao, A., Adinarayan, V., & Subba Rao, I. V. (1984). Quantity-intensity relationships of potassium in representative soils of Andhra Pradesh. Journal of Indian Society of Soil Science, 32(2), 240–243.
Thomas, G. W. (1982). Exchangeable cations. In A. L. Page (Ed.), Methods of soil analysis, part 2: Chemical and microbiological properties (pp. 159–165). Madison: American Society of Agronomy. https://doi.org/10.2134/agronmonogr9.2.2ed.c9
van Schouwenburg, J.C., & Schuffelen, A.C.  (1963). Potassium-exchange behavior of an illite. Netherlands Journal of Agricultural Science, 11(1), 13–22. https://doi.org/10.18174/njas.v11i1.17567.
Walkley, A., & Black, I.A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://doi.org/10.1097/00010694-193401000-00003.
Wang, F.L., & Huang, P.M. (2001). Effects of organic matter on the rate of potassium adsorption by soils. Canadian Journal of Soil Science, 81(3), 325–330. https://doi.org/10.4141/S00-069.
Wang, H. Y., Shen, Q. H., Zhou, J. M., Wang, J., Du C. W., & Chen, X. Q. (2011). Plants use alternative strategies to utilize non-exchangeable potassium in minerals. Plant and Soil, 343(1-2), 209–220. https://doi.org/10.1007/s11104-011-0726-x.
Zhang, W. Z., Chen, X. Q., Zhou, J. M., Liu, D. H., Wang, H. Y., & Du, C. W. (2013). Influence of humic acid on interaction of ammonium and potassium ions on clay minerals. Pedosphere, 23(4), 493–502. https://doi.org/10.1016/S1002-0160(13)60042-9.