بررسی اثر بیوچار و هیدروچار جلبک کلرلا ولگاریس فعال‌شده بر توزیع شکل‌ها و زیست‌فراهمی کادمیوم در خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

2 گروه شیمی، دانشکده علوم پایه، دانشگاه مراغه، آذربایجان شرقی، ایران

3 گروه علوم خاک، دانشکده کشاورزی، دانشگاه پیام نور تهران، تهران، ایران

چکیده

آلودگی خاک به فلزات سنگین، خطرات زیست‌محیطی قابل‌توجهی دارد که بر امنیت غذایی و سلامت انسان اثرگذار است. در این پژوهش اثر بیوچار و هیدروچار فعال مشتق شده از جلبک کلرلا ولگاریس بر شکل‌های مختلف کادمیوم در خاک بررسی شد. این پژوهش شامل سطوح 0، 5/0 و یک درصد وزنی بیوچار و هیدروچار فعال تولید شده از جلبک کلرلا ولگاریس در خاک‌هایی با غلظت کادمیوم 50 و 100 میلی‌گرم بر کیلوگرم است. بیوچار و هیدروچار به ترتیب در دمای 450 و 200 درجه سانتی‌گراد تولید و با هیدروکسید پتاسیم فعال شدند. شکل‌های مختلف کادمیوم در خاک شامل قابل تبادل، متصل مواد آلی، کربناتی و متصل به اکسید آهن و منگنز اندازه‌گیری شد. مورفولوژی سطح نمونه‌ها، مقدار کالری ناخالص، کربن، نیتروژن، هیدروژن، سطح ویژه و زیست‌توده هیدروچار و بیوچار فعال شده تعیین شدند. نتایج نشان داد که در تیمار 50 میلی‌گرم بر کیلوگرم کادمیوم، افزودن یک درصد بیوچار باعث کاهش 9/2 میلی‌گرم بر کیلوگرم کادمیوم (تیمار شاهد) قابل تبادل شد. افزایش غلظت بیوچار و هیدروچار از 5/0 به یک درصد باعث افزایش کادمیوم متصل به اجزای آلی و اکسیدهای منگنز و آهن شد. در غلظت‌های 50 و 100 میلی‌گرم بر کیلوگرم کادمیوم، بالاترین مقدار کادمیوم در شکل‌ اکسیدهای آهن و منگنز به ترتیب 23 و 8/24 میلی‌گرم بر کیلوگرم بود. به‌طورکلی نتایج این مطالعه نشان داد که بیوچار و هیدروچار فعال تولید شده از جلبک کلرلا ولگاریس با افزایش شکل‌های زیستی کم محلول کادمیوم می‌توانند گام مهمی در مسیر کشاورزی پایدار باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Activated Chlorella vulgaris Algae Biochar and Hydrochar on the Distribution and Bioavailability of Cadmium in Soil

نویسندگان [English]

  • Jafar Sufian 1
  • mohammad babaakbari 1
  • Armen Avanes 2
  • Salahedin Moradi 3
1 PhD student Department of Soil Sciences,Faculty of Agriculture, University of Zanjan, Zanjan, Iran,
2 Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh,East Azerbaijan, Iran, 55187-79842. Iran,
3 Department of Soil Science, Faculty of Agriculture, Tehran Payam Noor University, Tehran, Iran
چکیده [English]

Soil contamination with heavy metals, paticularly cadmium, poses significant environmental risks, threatening food security and human health. This study investigated the effect of activated biochar and hydrochar derived from Chlorella vulgaris algae on various cadmium forms in contaminated soils. Biochar and hydrochar were produced at 450 and 200°C, respectively, and activated with potassium hydroxide. They were applied at concentrations of 0, 1, and 4% by weight to soils contaminated with cadmium at levels of 50 and 100 mg kg-1. Cadmium fractions in soil—exchangeable, carbonate-bound, organic matter-bound, and those associated with iron and manganese oxides—were analyzed using atomic absorption spectroscopy.  Additionally, the surface morphology, gross calorific value, carbon, nitrogen, hydrogen content, specific surface area and biomass of the activated hydrochar and biochar were determined. The results indicated that with a cadmium concentration of 50 mg kg-1, the addition of 4% biochar reduced the exchangeable cadmium by 2.9 mg kg-1, attributed to the high specific surface area of biochar and hydrochar, providing numerous adsorption sites for cadmium ions. Increasing biochar and hydrochar concentrations from 1% to 4% enhanced the cadmium fractions bound to organic matter and iron/manganese oxides. At cadmium concentrations of 50 and 100 mg kg-1, the highest amounts of cadmium in the form of iron and manganese oxides were 23 and 24.8 mg kg-1, respectively. This study highlights the potential of biochar and activated hydrochar from Chlorella vulgaris algae to promote sustainable agriculture by reducing the bioavailability of cadmium in contaminated soils. 

کلیدواژه‌ها [English]

  • Soil amendment
  • Iron and manganese oxides
  • Pollution
  • Environmental
  • Gross calorific value

EXTENDED ABSTRACT

Introduction

Soil contamination by heavy metals is a major environmental problem that can seriously affect food security and human health. Heavy metals such as lead, cadmium, and zinc accumulate in the soil due to human activities, including applying fertilizers and pesticides, irrigation with wastewater, mining, and improper waste disposal. Agricultural products grown in contaminated soils absorb these heavy metals and enter the human food chain, posing severe health risks. Cadmium, in particular, poses numerous environmental and health hazards due to its high toxicity and ability to accumulate in soil. Prolonged exposure to cadmium can lead to kidney damage and an increased risk of osteoporosis, bone fractures, and cancer. As an immunotoxicant, cadmium can alter the function of the immune system and cause various health problems. In addition, this heavy metal has been linked to reproductive issues.

Materials and Methods

Chlorella vulgaris microalgae stocks were obtained from the Goher Sabz Algal Culture Laboratory and maintained under controlled laboratory conditions. The process involved maintaining the temperature at 25°C with a photoperiod of 12 hours light and 12 hours dark. After the logarithmic growth phase of the microalgae, the biomass was harvested, washed, and dried. Biochar and hydrochar were produced from this biomass and activated with potassium hydroxide. To investigate the effect of biochar and hydrochar on the bioavailability and distribution of chemical forms of cadmium, an experiment was conducted using a completely randomized design with three replications. Cadmium nitrate was used to contaminate the soil at three contamination levels, and the contaminated samples were incubated for 16 weeks. After the incubation period, the bioavailability of cadmium was assessed using EDTA, and the total cadmium content was determined by the digestion method.

Results and Discussion

The results showed that applying 1% biochar and hydrochar by weight reduced exchangeable cadmium. At a concentration of 50 mg kg-1, 1% biochar reduced exchangeable cadmium by 2.9 mg kg-1, and at 100 mg kg-1, this reduction was 4.1 mg kg-1. Similarly, 1% hydrochar reduced exchangeable cadmium by 2.9 and 1.7 mg kg-1, respectively. The combined use of biochar and hydrochar reduced exchangeable cadmium by 45%. Due to its high specific surface area and adsorption properties, biochar can provide numerous adsorption sites for metal ions and reduce their mobility.  In addition, the porous structure of biochar improves soil aeration and water retention, creating favorable conditions for microbial proliferation and metabolic processes. At concentrations of 50 and 100 mg kg-1, the combined use of biochar and hydrochar increased the cadmium content in the iron and manganese oxide fractions by 23 and 24.8 mg kg-1, respectively.

Conclusions

This study demonstrated that activated biochar and hydrochar produced from Chlorella vulgaris algae can significantly reduce the mobility and bioavailability of cadmium in soil Adding these amendments at 1% by weight reduced exchangeable cadmium by up to 45%. By increasing specific surface area and adsorption capacity, biochar and hydrochar reduce cadmium mobility and its potential toxicityThese results recommend using biochar and hydrochar as sustainable and effective soil amendments for managing cadmium contamination in agricultural soils.  These amendments can help protect crops and soil organisms from cadmium toxicity and contribute to environmental sustainability.

Author Contributions

Conceptualization, J.S. and M.B.S.; methodology, J.S. and S.M.; software, J.S. and A.A.; validation, M.B.S. and A.A. and S.M.; formal analysis, J.S.; investigation, J.S. and M.B.S.; resources, J.S. and A.A.; data curation, J.S. and S.M.; writing—original draft preparation, J.S. and M.B.S.; writing—review and editing, M.B.S. and A.A.; visualization, J.S. and M.B.S.; supervision, M.B.S.; project administration, M.B.S. and A.A.; funding acquisition, J.S. and S.M. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The subject of plagiarism has been considered by the authors and this article is without problem

Conflict of interest

The author declares no conflict of interest. 

Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal Advanced Research, 4, 367-374.
Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346.
Al-Nuaimy, M. N. M., Azizi, N., Nural, Y., & Yabalak, E. (2023). Recent advances in environmental and agricultural applications of hydrochars: A review. Environmental Research, 117923.
Amzal, B., Julin, B., Vahter, M., Wolk, A., Johanson, G., & Akesson, A. (2009). Population toxicokinetic modeling of cadmium for health risk assessment. Environmental Health Perspectives, 117(8), 1293-1301.
Angon, P. B., Islam, M. S., Kc, S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2023). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon.
Azadi, N., & Raiesi, F. (2021). Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Applied Soil Ecology, 167, 104043.
Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282-2287.
Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., ... & Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150-200.
Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2019). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science. 730-742
Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., Bijanzadeh, E., Khalili, D., & Farrokhnejad, E. (2024). Investigating the synergistic potential Si and biochar to immobilize soil Ni in a contaminated calcareous soil after Zea mays L. cultivation. EGUsphere, 2024, 1-21.
Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45(11), 4884-4889.
Cavali, M., Junior, N. L., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., ... & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Science of The Total Environment, 857, 159627.
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects—a brief summary. Molecules, 28(18), 6620.
Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., & Lu, W. (2015). Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere, 134, 286-293.
Chernysh, Y., Chubur, V., Ablieieva, I., Skvortsova, P., Yakhnenko, O., Skydanenko, M., ... & Roubík, H. (2024). Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review. Soil Systems, 8(2), 36.
Cirovic, A., & Satarug, S. (2024). Toxicity tolerance in the carcinogenesis of environmental cadmium. International Journal of Molecular Sciences, 25(3), 1851.
Dhull, S. B., Rose, P. K., Rani, J., Goksen, G., & Bains, A. (2024). Food waste to hydrochar: A potential approach towards the sustainable development goals, carbon neutrality and circular economy. Chemical Engineering Journal, 151609.
Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombolà, A. G., Ojeda, G., Bachmann, J., & Behrendt, F. (2018). Towards biochar and hydrochar engineering Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies, 11(3), 496.
Elaigwu, S. E., Rocher, V., Kyriakou, G., & Greenway, G. M. (2014) Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana shell. Journal of Industrial and Engineering Chemistry, 20 (5), 3467-3473.
Elliott, H. A., & Denneny, C. M. (1982). Soil adsorption of cadmium from solutions containing organic ligands (Vol. 11, No. 4, pp. 658-663). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 11, 4, 658-663
Fiaz, K., Danish, S., Younis, U., Malik, S. A., Raza Shah, M. H., & Niaz, S. (2014). Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. Journal of Soil Science and Plant Nutrition, 14(4), 845-854.
Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48.
Fu, M. M., Mo, C. H., Li, H., Zhang, Y. N., Huang, W. X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236, 117637.
Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2, 1-21.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. pp. 383-409. In Klute, A. (Ed.). Methods of Soil Analysis. Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and Soil Sci. Am. J.Madison, WI.
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.
Guan, J., Zhu, M., Zhou, J., Luo, L., Ferreira, L. F. R., Zhang, X., & Liu, J. (2023). Agricultural waste biochar after potassium hydroxide activation: Its adsorbent evaluation and potential mechanism. Bioresource Technology, 389, 129793.
Hamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Rashid, M. S., ... & Yang, X. (2020). Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Science of the Total Environment, 707, 136121.
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855.
Himaya, S. M. M. S., Kumara, A. D. N. T., Premanandarajah, P., & Thariq, M. G. M. (2023). Effective mitigation of Cadmium contamination in soil through Sawdust Biochar application. AGRIEAST, 17(2), 39-47.
Hu, Z., Li, J., Wang, H., Ye, Z., Wang, X., Li, Y., ... & Song, Z. (2019). Soil contamination with heavy metals and its impact on food security in China. Journal of Geoscience and Environment Protection, 7(05), 168.
Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., ... & Feng, Y. (2020). Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 264, 114677.
Ibrahim, I. A., & Elbaily, Z. I. (2020). A review: Importance of chlorella and different applications. Alexandria Journal of Veterinary Sciences, 65(1).16-34.
Jabir, T. F., Abbood, H. A. N., Salman, F. S., & Hafit, A. Y. (2021). Influence of pH, pesticide and radiation interactions on the chemical composition of Chlorella vulgaris algae. In IOP Conference Series: Earth and Environmental Science, 722(1), 012046
Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., ... & Sang, W. (2022). Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, 294, 118655.
Joo, G., Lee, W., & Choi, Y. (2021). Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environmental Science and Pollution Research, 28, 25390-25399.
Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378.
Kondzior, P., & Butarewicz, A. (2021). Influence of Walls in a Container on the Growth of the Chlorella vulgaris Algae. Journal of Ecological Engineering, 22(10), 98-108.
Latosińska, J., Kowalik, R., & Gawdzik, J. (2021). Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Applied Sciences, 11(2), 548.
Lee, J. W., Jo, A. H., Lee, D. C., Choi, C. Y., Kang, J. C., & Kim, J. H. (2023). Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. Environmental Research, 236, 116600.
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478.
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J. O., He, Y., Zhang, Y., & Yap, P. S. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10(1), 106502.
Luevano, J., & Damodaran, C. (2014). A review of molecular events of cadmium-induced carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 33(3).
Majeed, A., Niaz, A., Rizwan, M., Imran, M., Alsahli, A. A., Alyemeni, M. N., & Ali, S. (2021). Effects of biochar, farm manure, and pressmud on mineral nutrients and cadmium availability to wheat (Triticum aestivum L.) in Cd‐contaminated soil. Physiologia Plantarum, 173(1), 191-200.
Maretta, M., & Marettová, E. (2022). Toxic effects of cadmium on the female reproductive organs a review. Folia Veterinaria, 66(4), 56-66.
Martikainen, M. (2021). Adsorption of phosphorous and arsenic oxyanions to metal hydroxide and oxide surfaces.
McLean, E. Q. (1982). Soil pH and lime requirement. In: Page, A.L. Miller, R.H. Keeney, D.R (Eds). Methods of Soil Analysis, Part 2. Chemical and Microbilogycal Properties, 2nd Ed Agronomy. 9: 199-224
Meng, Z., Huang, S., & Lin, Z. (2023). Effects of modification and co-aging with soils on Cd (II) adsorption behaviors and quantitative mechanisms by biochar. Environmental Science and Pollution Research, 30(4), 8902-8915.
Mitra, P., Goyal, T., Sharma, P., Sai Kiran, G., Rana, S., & Sharma, S. (2023). Plasma microRNA expression and immunoregulatory cytokines in an Indian population occupationally exposed to cadmium. Journal of Biochemical and Molecular Toxicology, 37(1), e23221.
Mukhopadhyay, S., Masto, R. E., Sarkar, P., & Bari, S. (2022). Biochar washing to improve the fuel quality of agro-industrial waste biomass. Journal of the Energy Institute, 102, 60-69.
Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: a review. Journal of Environmental Quality, 26(3), 602-617.
Nasiadek, M., Danilewicz, M., Klimczak, M., Stragierowicz, J., & Kilanowicz, A. (2019). Subchronic exposure to cadmium causes persistent changes in the reproductive system in female wistar rats. Oxidative Medicine and Cellular Longevity, 2019.
Nguyen, T. N. D., Vu, K. T., Nguyen, T. H. N., Nguyen, T. P., Pham, N. K., Nguyen, T. G., ... & Nguyen, L. V. (2024). Effects of biochar and rice straw application on rice (Oryza Sativa L.) growth, yield, and cadmium accumulation in contaminated soil. Vegetos, 37(1), 404-411.
Nordberg, G. F. (1993). Cadmium carcinogenesis and its relationship to other health effects in humans. Scandinavian Journal of Work, Environment & Health, 104-107.
Nordberg, M., & Nordberg, G. F. (2022). Metallothionein and cadmium toxicology—Historical review and commentary. Biomolecules, 12(3), 360.
Oktaviananda, C., Rahmawati, R. F., Prasetya, A., Purnomo, C. W., Yuliansyah, A. T., & Cahyono, R. B. (2017). Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. In AIP Conference Proceedings, 1823 (1).
Paz-Ferreiro, J., Álvarez-Calvo, M. L., Figueiredo, C. C. D., Mendez, A. M., & Gascó, G. (2020). Effect of biochar and hydrochar on forms of aluminium in an acidic soil. Applied Sciences, 10(21), 7843.
Peña-Castro, J. M., Martı́nez-Jerónimo, F., Esparza-Garcı́a, F., & Cañizares-Villanueva, R. O. (2004). Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57(11), 1629-1636.
Qiao, J., Yu, H., Wang, X., Li, F., Wang, Q., Yuan, Y., & Liu, C. (2019). The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar, 1(2), 203-212.
Rahimi, M., Kamyab, T., Rahimi, G., Abadi, E. C. A., Ebrahimi, E., & Naimi, S. (2023). Modeling and identification of affective parameters on cadmium’s durability and evaluating cadmium pollution indicators caused by using chemical fertilizers in long term. Environmental Geochemistry and Health, 45(12), 8829-8850.
Rassaei, F. (2022). Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils in Iran. Soil Science Annual, 73(2).
Rassaei, F., Hoodaji, M., & Abtahi, S. A. (2020a). Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy and Water Environment, 18, 595-606.
Rassaei, F., Hoodaji, M., & Ali Abtahi, S. (2020b). Cadmium fractions in two calcareous soils affected by incubation time, zinc and moisture regime. Communications in Soil Science and Plant Analysis, 51(4), 456-467.
Roades, J. D. (1996) Salinity: electrical conductivity and total dissolved solids. Method of Soil Analysis, Part 3: Chemical Methods. Madison. Wisconsin, USA. 417-436.
Rodríguez, J., & Mandalunis, P. M. (2018). A review of metal exposure and its effects on bone health. Journal of Toxicology, 2018.
Sánchez-Castro, I., Molina, L., Prieto-Fernández, M. Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil-Remediation techniques applied in real soil-contamination events. Heliyon.
Sayadi, M. H., Rashki, O., & Shahri, E. (2019). Application of modified Spirulina platensis and Chlorella vulgaris powder on the adsorption of heavy metals from aqueous solutions. Journal of Environmental Chemical Engineering, 7(3), 103169.
Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. Chemical Processes in Soils, 8, 563-617.
Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017.
Seroka, N. S., Luo, H., & Khotseng, L. (2024). Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review. Batteries, 10(5), 144.
Singh, S. K., Subramanian, V., & Gibbs, R. J. (1984). Hydrous Fe and Mn oxides—scavengers of heavy metals in the aquatic environment. Critical Reviews in Environmental Control, 14(1), 33-90.
Spark, D. (1996). Method of Soil Analysis, Part 3. Chemical Method. Soil Science Society of America Book Series NO 5. Soil Sci. Am. J. Madison. WI.
Staessen, J. A., Roels, H. A., Emelianov, D., Kuznetsova, T., Thijs, L., Vangronsveld, J., & Fagard, R. (1999). Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. The Lancet, 353(9159), 1140-1144.
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310.
Suda, A., & Makino, T. (2016). Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma, 270, 68-75.
Sui, F., Zuo, J., Chen, D., Li, L., Pan, G., & Crowley, D. E. (2018). Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 25, 3368-3377.
Suman, S. (2020). Conversion of solid biomass into biochar: Act as a green, eco-friendly energy source and a substitute of fossil fuel inputs. Proceedings, 58 (1), p. 34.
Sun, K., Tang, J., Gong, Y., & Zhang, H. (2015). Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 22, 16640-16651.
Supraja, K. V., Doddapaneni, T. R. K. C., Ramasamy, P. K., Kaushal, P., Ahammad, S. Z., Pollmann, K., & Jain, R. (2023). Critical review on production, characterization and applications of microalgal hydrochar: Insights on circular bioeconomy through hydrothermal carbonization. Chemical Engineering Journal, 145059.
Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry Journal, 51,844–851.
Usman, M., Zia-ur-Rehman, M., Rizwan, M., Abbas, T., Ayub, M. A., Naeem, A., ... & Ali, S. (2023). Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. Environmental Research, 216, 114397.
Waalkes, M. P. (2000). Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79(1-4), 241-244.
Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37,29–38.
Wang, C. C., Zhang, Q. C., Yan, C. A., Tang, G. Y., Zhang, M. Y., Ma, L. Q., ... & Xiang, P. (2023). Heavy metal (loid) s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. Science of The Total Environment, 882, 163361.
Wang, C., Li, X., Wu, W., Chen, G., & Tao, J. (2021). Removal of cadmium in water by potassium hydroxide activated biochar produced from Enteromorpha prolifera. Journal of Water Process Engineering, 42, 102201.
Wang, Z., Sun, Y., Yao, W., Ba, Q., & Wang, H. (2021). Effects of cadmium exposure on the immune system and immunoregulation. Frontiers in Immunology, 12, 695484.
Xin, J. (2024). Enhancing soil Health to minimize Cadmium accumulation in agro-products: The role of microorganisms, organic amendments, and nutrients. Environmental Pollution, 123890.
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., ... & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal, 366, 608-621.
Younis, U., Qayyum, M. F., Shah, M. H. R., Danish, S., Shahzad, A. N., Malik, S. A., & Mahmood, S. (2015). Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar‐amended sewage‐irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178(2), 209-217.
Yu, W., Ren, T., Duan, Y., Huai, S., Zhang, Q., Cai, Z., & Lu, C. (2023). Mechanism of Al toxicity alleviation in acidic red soil by rice-straw hydrochar application and comparison with pyrochar. Science of The Total Environment, 877, 162849.
Zhang, A., Li, X., Xing, J., & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8(4), 104196.
Zhang, P., Zhang, X., Li, Y., & Han, L. (2020). Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresource Technology, 302, 122850.
Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., ... & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472-8483.
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: a review. Energy, 171, 581-598.
Zhao, Q., Qiu, Y., Lan, T., Li, J., Li, B., Wu, Z., ... & Wu, W. (2021). Comparison of lead adsorption characteristics onto soil-derived particulate organic matter versus humic acid. Journal of Soils and Sediments, 21, 2589-2603.
Zibarev, N., Toumi, A., Politaeva, N., & Iljin, I. (2024). Nutrients recovery from dairy wastewater by Chlorella vulgaris and comparison of the lipid’s composition with various chlorella strains for biodiesel production. Plos one, 19(4), e0297464.