Abdel-Aty, A. M., Ammar, N. S., Abdel Ghafar, H. H., & Ali, R. K. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal Advanced Research, 4, 367-374.
Ahmad, M. T., Shariff, M., Md. Yusoff, F., Goh, Y. M., & Banerjee, S. (2020). Applications of microalga Chlorella vulgaris in aquaculture. Reviews in Aquaculture, 12(1), 328-346.
Al-Nuaimy, M. N. M., Azizi, N., Nural, Y., & Yabalak, E. (2023). Recent advances in environmental and agricultural applications of hydrochars: A review. Environmental Research, 117923.
Amzal, B., Julin, B., Vahter, M., Wolk, A., Johanson, G., & Akesson, A. (2009). Population toxicokinetic modeling of cadmium for health risk assessment. Environmental Health Perspectives, 117(8), 1293-1301.
Angon, P. B., Islam, M. S., Kc, S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2023). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon.
Azadi, N., & Raiesi, F. (2021). Sugarcane bagasse biochar modulates metal and salinity stresses on microbial functions and enzyme activities in saline co-contaminated soils. Applied Soil Ecology, 167, 104043.
Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282-2287.
Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., ... & Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150-200.
Boostani, H. R., Hardie, A. G., & Najafi-Ghiri, M. (2019). Chemical fractions and bioavailability of nickel in a Ni-treated calcareous soil amended with plant residue biochars. Archives of Agronomy and Soil Science. 730-742
Boostani, H. R., Hardie, A. G., Najafi-Ghiri, M., Bijanzadeh, E., Khalili, D., & Farrokhnejad, E. (2024). Investigating the synergistic potential Si and biochar to immobilize soil Ni in a contaminated calcareous soil after Zea mays L. cultivation. EGUsphere, 2024, 1-21.
Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45(11), 4884-4889.
Cavali, M., Junior, N. L., de Sena, J. D., Woiciechowski, A. L., Soccol, C. R., Belli Filho, P., ... & de Castilhos Junior, A. B. (2023). A review on hydrothermal carbonization of potential biomass wastes, characterization and environmental applications of hydrochar, and biorefinery perspectives of the process. Science of The Total Environment, 857, 159627.
Charkiewicz, A. E., Omeljaniuk, W. J., Nowak, K., Garley, M., & Nikliński, J. (2023). Cadmium toxicity and health effects—a brief summary. Molecules, 28(18), 6620.
Chen, T., Zhou, Z., Han, R., Meng, R., Wang, H., & Lu, W. (2015). Adsorption of cadmium by biochar derived from municipal sewage sludge: impact factors and adsorption mechanism. Chemosphere, 134, 286-293.
Chernysh, Y., Chubur, V., Ablieieva, I., Skvortsova, P., Yakhnenko, O., Skydanenko, M., ... & Roubík, H. (2024). Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review. Soil Systems, 8(2), 36.
Cirovic, A., & Satarug, S. (2024). Toxicity tolerance in the carcinogenesis of environmental cadmium. International Journal of Molecular Sciences, 25(3), 1851.
Dhull, S. B., Rose, P. K., Rani, J., Goksen, G., & Bains, A. (2024). Food waste to hydrochar: A potential approach towards the sustainable development goals, carbon neutrality and circular economy. Chemical Engineering Journal, 151609.
Dieguez-Alonso, A., Funke, A., Anca-Couce, A., Rombolà, A. G., Ojeda, G., Bachmann, J., & Behrendt, F. (2018). Towards biochar and hydrochar engineering Influence of process conditions on surface physical and chemical properties, thermal stability, nutrient availability, toxicity and wettability. Energies, 11(3), 496.
Elaigwu, S. E., Rocher, V., Kyriakou, G., & Greenway, G. M. (2014) Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana shell. Journal of Industrial and Engineering Chemistry, 20 (5), 3467-3473.
Elliott, H. A., & Denneny, C. M. (1982). Soil adsorption of cadmium from solutions containing organic ligands (Vol. 11, No. 4, pp. 658-663). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 11, 4, 658-663
Fiaz, K., Danish, S., Younis, U., Malik, S. A., Raza Shah, M. H., & Niaz, S. (2014). Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. Journal of Soil Science and Plant Nutrition, 14(4), 845-854.
Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48.
Fu, M. M., Mo, C. H., Li, H., Zhang, Y. N., Huang, W. X., & Wong, M. H. (2019). Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236, 117637.
Gabhane, J. W., Bhange, V. P., Patil, P. D., Bankar, S. T., & Kumar, S. (2020). Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2, 1-21.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. pp. 383-409. In Klute, A. (Ed.). Methods of Soil Analysis. Part 1. Physical and mineralogical methods. 2nd ed. Agron. Monogr. 9. ASA and Soil Sci. Am. J.Madison, WI.
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., & Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782.
Guan, J., Zhu, M., Zhou, J., Luo, L., Ferreira, L. F. R., Zhang, X., & Liu, J. (2023). Agricultural waste biochar after potassium hydroxide activation: Its adsorbent evaluation and potential mechanism. Bioresource Technology, 389, 129793.
Hamid, Y., Tang, L., Hussain, B., Usman, M., Lin, Q., Rashid, M. S., ... & Yang, X. (2020). Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Science of the Total Environment, 707, 136121.
He, L., Zhong, H., Liu, G., Dai, Z., Brookes, P. C., & Xu, J. (2019). Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environmental Pollution, 252, 846-855.
Himaya, S. M. M. S., Kumara, A. D. N. T., Premanandarajah, P., & Thariq, M. G. M. (2023). Effective mitigation of Cadmium contamination in soil through Sawdust Biochar application. AGRIEAST, 17(2), 39-47.
Hu, Z., Li, J., Wang, H., Ye, Z., Wang, X., Li, Y., ... & Song, Z. (2019). Soil contamination with heavy metals and its impact on food security in China. Journal of Geoscience and Environment Protection, 7(05), 168.
Huang, L., Wang, Q., Zhou, Q., Ma, L., Wu, Y., Liu, Q., ... & Feng, Y. (2020). Cadmium uptake from soil and transport by leafy vegetables: a meta-analysis. Environmental Pollution, 264, 114677.
Ibrahim, I. A., & Elbaily, Z. I. (2020). A review: Importance of chlorella and different applications. Alexandria Journal of Veterinary Sciences, 65(1).16-34.
Jabir, T. F., Abbood, H. A. N., Salman, F. S., & Hafit, A. Y. (2021). Influence of pH, pesticide and radiation interactions on the chemical composition of Chlorella vulgaris algae. In IOP Conference Series: Earth and Environmental Science, 722(1), 012046
Ji, M., Wang, X., Usman, M., Liu, F., Dan, Y., Zhou, L., ... & Sang, W. (2022). Effects of different feedstocks-based biochar on soil remediation: A review. Environmental Pollution, 294, 118655.
Joo, G., Lee, W., & Choi, Y. (2021). Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environmental Science and Pollution Research, 28, 25390-25399.
Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378.
Kondzior, P., & Butarewicz, A. (2021). Influence of Walls in a Container on the Growth of the Chlorella vulgaris Algae. Journal of Ecological Engineering, 22(10), 98-108.
Latosińska, J., Kowalik, R., & Gawdzik, J. (2021). Risk assessment of soil contamination with heavy metals from municipal sewage sludge. Applied Sciences, 11(2), 548.
Lee, J. W., Jo, A. H., Lee, D. C., Choi, C. Y., Kang, J. C., & Kim, J. H. (2023). Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. Environmental Research, 236, 116600.
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478.
Liu, T., Lawluvy, Y., Shi, Y., Ighalo, J. O., He, Y., Zhang, Y., & Yap, P. S. (2022). Adsorption of cadmium and lead from aqueous solution using modified biochar: A review. Journal of Environmental Chemical Engineering, 10(1), 106502.
Luevano, J., & Damodaran, C. (2014). A review of molecular events of cadmium-induced carcinogenesis. Journal of Environmental Pathology, Toxicology and Oncology, 33(3).
Majeed, A., Niaz, A., Rizwan, M., Imran, M., Alsahli, A. A., Alyemeni, M. N., & Ali, S. (2021). Effects of biochar, farm manure, and pressmud on mineral nutrients and cadmium availability to wheat (Triticum aestivum L.) in Cd‐contaminated soil. Physiologia Plantarum, 173(1), 191-200.
Maretta, M., & Marettová, E. (2022). Toxic effects of cadmium on the female reproductive organs a review. Folia Veterinaria, 66(4), 56-66.
Martikainen, M. (2021). Adsorption of phosphorous and arsenic oxyanions to metal hydroxide and oxide surfaces.
McLean, E. Q. (1982). Soil pH and lime requirement. In: Page, A.L. Miller, R.H. Keeney, D.R (Eds). Methods of Soil Analysis, Part 2. Chemical and Microbilogycal Properties, 2nd Ed Agronomy. 9: 199-224
Meng, Z., Huang, S., & Lin, Z. (2023). Effects of modification and co-aging with soils on Cd (II) adsorption behaviors and quantitative mechanisms by biochar. Environmental Science and Pollution Research, 30(4), 8902-8915.
Mitra, P., Goyal, T., Sharma, P., Sai Kiran, G., Rana, S., & Sharma, S. (2023). Plasma microRNA expression and immunoregulatory cytokines in an Indian population occupationally exposed to cadmium. Journal of Biochemical and Molecular Toxicology, 37(1), e23221.
Mukhopadhyay, S., Masto, R. E., Sarkar, P., & Bari, S. (2022). Biochar washing to improve the fuel quality of agro-industrial waste biomass. Journal of the Energy Institute, 102, 60-69.
Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: a review. Journal of Environmental Quality, 26(3), 602-617.
Nasiadek, M., Danilewicz, M., Klimczak, M., Stragierowicz, J., & Kilanowicz, A. (2019). Subchronic exposure to cadmium causes persistent changes in the reproductive system in female wistar rats. Oxidative Medicine and Cellular Longevity, 2019.
Nguyen, T. N. D., Vu, K. T., Nguyen, T. H. N., Nguyen, T. P., Pham, N. K., Nguyen, T. G., ... & Nguyen, L. V. (2024). Effects of biochar and rice straw application on rice (Oryza Sativa L.) growth, yield, and cadmium accumulation in contaminated soil. Vegetos, 37(1), 404-411.
Nordberg, G. F. (1993). Cadmium carcinogenesis and its relationship to other health effects in humans. Scandinavian Journal of Work, Environment & Health, 104-107.
Nordberg, M., & Nordberg, G. F. (2022). Metallothionein and cadmium toxicology—Historical review and commentary. Biomolecules, 12(3), 360.
Oktaviananda, C., Rahmawati, R. F., Prasetya, A., Purnomo, C. W., Yuliansyah, A. T., & Cahyono, R. B. (2017). Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass. In AIP Conference Proceedings, 1823 (1).
Paz-Ferreiro, J., Álvarez-Calvo, M. L., Figueiredo, C. C. D., Mendez, A. M., & Gascó, G. (2020). Effect of biochar and hydrochar on forms of aluminium in an acidic soil. Applied Sciences, 10(21), 7843.
Peña-Castro, J. M., Martı́nez-Jerónimo, F., Esparza-Garcı́a, F., & Cañizares-Villanueva, R. O. (2004). Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress. Chemosphere, 57(11), 1629-1636.
Qiao, J., Yu, H., Wang, X., Li, F., Wang, Q., Yuan, Y., & Liu, C. (2019). The applicability of biochar and zero-valent iron for the mitigation of arsenic and cadmium contamination in an alkaline paddy soil. Biochar, 1(2), 203-212.
Rahimi, M., Kamyab, T., Rahimi, G., Abadi, E. C. A., Ebrahimi, E., & Naimi, S. (2023). Modeling and identification of affective parameters on cadmium’s durability and evaluating cadmium pollution indicators caused by using chemical fertilizers in long term. Environmental Geochemistry and Health, 45(12), 8829-8850.
Rassaei, F. (2022). Effect of monocalcium phosphate on the concentration of cadmium chemical fractions in two calcareous soils in Iran. Soil Science Annual, 73(2).
Rassaei, F., Hoodaji, M., & Abtahi, S. A. (2020a). Adsorption kinetic and cadmium fractions in two calcareous soils affected by zinc and different moisture regimes. Paddy and Water Environment, 18, 595-606.
Rassaei, F., Hoodaji, M., & Ali Abtahi, S. (2020b). Cadmium fractions in two calcareous soils affected by incubation time, zinc and moisture regime. Communications in Soil Science and Plant Analysis, 51(4), 456-467.
Roades, J. D. (1996) Salinity: electrical conductivity and total dissolved solids. Method of Soil Analysis, Part 3: Chemical Methods. Madison. Wisconsin, USA. 417-436.
Rodríguez, J., & Mandalunis, P. M. (2018). A review of metal exposure and its effects on bone health. Journal of Toxicology, 2018.
Sánchez-Castro, I., Molina, L., Prieto-Fernández, M. Á., & Segura, A. (2023). Past, present and future trends in the remediation of heavy-metal contaminated soil-Remediation techniques applied in real soil-contamination events. Heliyon.
Sayadi, M. H., Rashki, O., & Shahri, E. (2019). Application of modified Spirulina platensis and Chlorella vulgaris powder on the adsorption of heavy metals from aqueous solutions. Journal of Environmental Chemical Engineering, 7(3), 103169.
Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. Chemical Processes in Soils, 8, 563-617.
Seow, Y. X., Tan, Y. H., Mubarak, N. M., Kansedo, J., Khalid, M., Ibrahim, M. L., & Ghasemi, M. (2022). A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering, 10(1), 107017.
Seroka, N. S., Luo, H., & Khotseng, L. (2024). Biochar-Derived Anode Materials for Lithium-Ion Batteries: A Review. Batteries, 10(5), 144.
Singh, S. K., Subramanian, V., & Gibbs, R. J. (1984). Hydrous Fe and Mn oxides—scavengers of heavy metals in the aquatic environment. Critical Reviews in Environmental Control, 14(1), 33-90.
Spark, D. (1996). Method of Soil Analysis, Part 3. Chemical Method. Soil Science Society of America Book Series NO 5. Soil Sci. Am. J. Madison. WI.
Staessen, J. A., Roels, H. A., Emelianov, D., Kuznetsova, T., Thijs, L., Vangronsveld, J., & Fagard, R. (1999). Environmental exposure to cadmium, forearm bone density, and risk of fractures: prospective population study. The Lancet, 353(9159), 1140-1144.
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310.
Suda, A., & Makino, T. (2016). Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: a review. Geoderma, 270, 68-75.
Sui, F., Zuo, J., Chen, D., Li, L., Pan, G., & Crowley, D. E. (2018). Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study. Environmental Science and Pollution Research, 25, 3368-3377.
Suman, S. (2020). Conversion of solid biomass into biochar: Act as a green, eco-friendly energy source and a substitute of fossil fuel inputs. Proceedings, 58 (1), p. 34.
Sun, K., Tang, J., Gong, Y., & Zhang, H. (2015). Characterization of potassium hydroxide (KOH) modified hydrochars from different feedstocks for enhanced removal of heavy metals from water. Environmental Science and Pollution Research, 22, 16640-16651.
Supraja, K. V., Doddapaneni, T. R. K. C., Ramasamy, P. K., Kaushal, P., Ahammad, S. Z., Pollmann, K., & Jain, R. (2023). Critical review on production, characterization and applications of microalgal hydrochar: Insights on circular bioeconomy through hydrothermal carbonization. Chemical Engineering Journal, 145059.
Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry Journal, 51,844–851.
Usman, M., Zia-ur-Rehman, M., Rizwan, M., Abbas, T., Ayub, M. A., Naeem, A., ... & Ali, S. (2023). Effect of soil texture and zinc oxide nanoparticles on growth and accumulation of cadmium by wheat: a life cycle study. Environmental Research, 216, 114397.
Waalkes, M. P. (2000). Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79(1-4), 241-244.
Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37,29–38.
Wang, C. C., Zhang, Q. C., Yan, C. A., Tang, G. Y., Zhang, M. Y., Ma, L. Q., ... & Xiang, P. (2023). Heavy metal (loid) s in agriculture soils, rice, and wheat across China: Status assessment and spatiotemporal analysis. Science of The Total Environment, 882, 163361.
Wang, C., Li, X., Wu, W., Chen, G., & Tao, J. (2021). Removal of cadmium in water by potassium hydroxide activated biochar produced from Enteromorpha prolifera. Journal of Water Process Engineering, 42, 102201.
Wang, Z., Sun, Y., Yao, W., Ba, Q., & Wang, H. (2021). Effects of cadmium exposure on the immune system and immunoregulation. Frontiers in Immunology, 12, 695484.
Xin, J. (2024). Enhancing soil Health to minimize Cadmium accumulation in agro-products: The role of microorganisms, organic amendments, and nutrients. Environmental Pollution, 123890.
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., Huang, J., ... & Gao, B. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal, 366, 608-621.
Younis, U., Qayyum, M. F., Shah, M. H. R., Danish, S., Shahzad, A. N., Malik, S. A., & Mahmood, S. (2015). Growth, survival, and heavy metal (Cd and Ni) uptake of spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar‐amended sewage‐irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178(2), 209-217.
Yu, W., Ren, T., Duan, Y., Huai, S., Zhang, Q., Cai, Z., & Lu, C. (2023). Mechanism of Al toxicity alleviation in acidic red soil by rice-straw hydrochar application and comparison with pyrochar. Science of The Total Environment, 877, 162849.
Zhang, A., Li, X., Xing, J., & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8(4), 104196.
Zhang, P., Zhang, X., Li, Y., & Han, L. (2020). Influence of pyrolysis temperature on chemical speciation, leaching ability, and environmental risk of heavy metals in biochar derived from cow manure. Bioresource Technology, 302, 122850.
Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., ... & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472-8483.
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production and applications: a review. Energy, 171, 581-598.
Zhao, Q., Qiu, Y., Lan, T., Li, J., Li, B., Wu, Z., ... & Wu, W. (2021). Comparison of lead adsorption characteristics onto soil-derived particulate organic matter versus humic acid. Journal of Soils and Sediments, 21, 2589-2603.
Zibarev, N., Toumi, A., Politaeva, N., & Iljin, I. (2024). Nutrients recovery from dairy wastewater by Chlorella vulgaris and comparison of the lipid’s composition with various chlorella strains for biodiesel production. Plos one, 19(4), e0297464.