توسعه یک مدل مبتنی بر شبکه عصبی مصنوعی برای تخمین میزان آهن فعال در برگ انگور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران

3 استادیار گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

آهن یک عنصر ضروری در فرآیند رشد گیاهان است که نقش حیاتی در تولید کلروفیل دارد. کمبود آهن یکی از محدودیت‌های جدی در باغ‌های انگور است که می‌تواند عملکرد و کیفیت محصول را به طور قابل توجهی تحت تاثیر قرار دهد. استفاده از روش‌های نوین مانند پردازش تصویر دیجیتال، علاوه بر دقت بالا، با کاهش نیاز به انجام آزمایش‌های گران‌قیمت و وقت‌گیر آزمایشگاهی، موجب کاهش هزینه‌ها و تسریع فرایند تصمیم‌گیری مبتنی بر داده در مدیریت باغ می‌شود. هدف این مطالعه توسعه یک سامانه مبتنی پردازش تصویر و شبکه عصبی برای تخمین آهن فعال موجود در برگ گیاه انگور است. بدین منظور، 55 نمونه برگ با سطوح مختلف کمبود آهن از باغ‌های اطراف شهرستان ارومیه جمع‌آوری و مورد آزمایش قرار گرفت. میزان آهن کل و آهن فعال در نمونه‌ها با استفاده از روش جذب اتمی اندازه‌گیری شده و تصاویر برگ‌ها در شرایط نوری کنترل شده ثبت و مورد پردازش قرار گرفتند. ویژگی‌های آماری از تصاویر استخراج و همبستگی آنها با مقادیر آهن فعال و آهن کل مورد بررسی قرار گرفت. در نهایت ویژگی‌های برتر برای پیش‌بینی میزان آهن با استفاده از شبکه عصبی مصنوعی چند لایه استفاده شد. نتایج رگرسیون خطی نشان داد که میزان آهن فعال برگ با مولفه‌های رنگی R، G، H و S به ترتیب دارای همبستگی 64/0، 58/0 و 54/0 و 45/0 است ولی مقدار آهن کل دارای همبستگی با تغییرات رنگ برگ نیست. مدل شبکه عصبی با ساختار بهینه 1-9-8 قادر به پیش‌بینی داده‌های بدست آمده از دستگاه جذب اتمی با دقت 83/0، 88/0 و 84/0 به‌ترتیب برای داده‌های آموزش، تست و کل داده‌ها بود. در نهایت می‌توان نتیجه گرفت که روش پردازش تصویر به عنوان یک ابزار موثر و قابل اعتماد در مدیریت بهینه تغذیه گیاهان و تشخیص سریع کمبود آهن می‌تواند مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Development of an artificial neural network-based model for estimating the active iron content in grape leaves

نویسندگان [English]

  • Shabnam Firuzi 1
  • Ebrahim Sepehr 2
  • Aydin Imani 2
  • soleiman hossein pour 3
1 Dept. of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Department of Soil Science, Urmia University, Urmia, Iran
3 Assistant Professor, Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj: Iran
چکیده [English]

Iron is an essential element in the growth process of plants and plays a crucial role in chlorophyll production. Iron deficiency is a serious limitation in vineyards that can significantly affect both the yield and the quality of the crop. The use of modern methods such as digital image processing not only increases precision but also reduces the need for costly and time-consuming laboratory testing, thereby lowering costs and speeding up data-driven decision-making processes in orchard management. The aim of this study is to develop a system based on image processing and neural networks to estimate the active iron content in grape leaves. For this purpose, 55 leaf samples with different levels of iron deficiency were collected and analyzed from vineyards around Urmia. The total and active iron content in the samples was measured using atomic absorption spectroscopy and the leaves were photographed and processed under controlled light conditions. Statistical features were extracted from the images and their correlation with active and total iron content was analyzed. Finally, the best features were used to predict iron content using a multilayer artificial neural network. The results of the linear regression show that active iron correlates with the R, G, H, and S color channels with coefficients of 0.64, 0.58, 0.54, and 0.45, respectively, and that total iron does not correlate with the changes in leaf color. The neural network with an optimized structure of 8-9-1 was able to predict the data from the atomic absorption device with an accuracy of 0.83, 0.88, and 0.84 for training, test, and all data, respectively. In summary, image processing can be effectively and reliably used as a tool for optimal plant nutrition management and rapid diagnosis of iron deficiency.

کلیدواژه‌ها [English]

  • Iron estimation
  • Grape leaves
  • Artificial neural network
  • Image processing

EXTENDED ABSTRACT

 

Introduction

Iron is an essential micronutrient that plays a crucial role in the physiological and biochemical processes of plants. Recent advances in digital imaging have encouraged various industries to use this technology to determine the relationship between color and product content. While there are several methods for determining iron concentration in plants, the use of imaging offers distinct advantages over traditional laboratory methods.

Methods

The leaf samples were taken from the young and middle leaves of the grape branches. In June 2018, 55 randomly selected samples with varying degrees of iron chlorosis were taken from several vineyards. These samples were then transported to the laboratory for imaging and analysis of active and total iron content. After the solutions were prepared for each method, the concentrations of total and active iron were determined using an atomic absorption spectrophotometer. The samples were then placed in an environment with controlled lighting for the imaging procedures. After preprocessing, the images were converted from RGB to HSV color space and statistical features were extracted from the R, G, B, H, S and V color channels. Since leaf colors vary significantly, a powerful network is needed to handle these variations. Therefore, a multilayer perceptron neural network (MLP NN) was developed to model the experimental iron data and the corresponding images. The data were split into training (70%), validation (15%) and test (15%) to prevent overfitting and reduce the dependence of the model on the training data. The color features of the leaves and the amounts of iron measured from each leaf were considered as inputs and outputs of the model, respectively. The optimization of the network structure was trained with different numbers of neurons in the layers, ranging from one to 25, using the root mean square error (R²), root mean square error (RMSE) and mean absolute percentage error (MAPE) as evaluation criteria.

Results

The results of correlating color components with active and total iron showed that active iron correlates with the R, G, H, and S color channels with coefficients of 0.64, 0.58, 0.54, and 0.45, respectively, and that there is no correlation between changes in leaf color and total iron content. A multilayer perceptron network consisting of a hidden layer and an output layer, was used to estimate the active iron concentration using MATLAB 2018 software. The data for training, validation, and testing were selected using a random function. Tangent Sigmoid (tangsig) and linear (purelin) activation functions were applied to the hidden and output layers, respectively. The correlation between the predicted and laboratory data resulted in a coefficient of 0.84, an RMSE of 2.04, and a MAPE of 32.36. The high R2 value confirms the ability of the model to estimate the available iron in plant leaves, while the low error values underline the generalization ability of the neural network model.

Conclusion

The algorithm presented in this study is an effective tool for estimating plant iron. For active iron, the neural network model has shown that it is possible to estimate the amount of iron in grape leaves based on the features extracted from the image (mean and standard deviation). The neural network model developed here, based on the output of the image processing system, proved to be successful in predicting the actual active iron amounts with a detection accuracy of the algorithm of 84%. It is proposed to use databases with more samples in future studies and also to develop other machine learning and plant models for estimating active iron content.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

If the study did not report any data, you might add “Not applicable” here.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest. 

Arnal Barbedo, J. G. (2013). Digital image processing techniques for detecting, quantifying and classifying plant diseases. SpringerPlus2(1), 660. doi:  https://doi.org/10.1186/2193-1801-2-660
Asraf, H. M., Nooritawati, M. T., & Rizam, M. S. (2012). A comparative study in kernel-based support vector machine of oil palm leaves nutrient disease. Procedia Engineering41, 1353-1359. doi: https://doi.org/10.1016/j.proeng.2012.07.321
Bienfait, H. F., & Mark, F. V. D. (1983). Phytoferritin and its role in iron metabolism. In: Metals and Micronutrients: Uptake and Utilization by plants. Pp. 111/123. Academic Press. New York.
Costa, J. M., Grant, O. M., & Chaves, M. M. (2013). Thermography to explore plant–environment interactions. Journal of experimental botany64(13), 3937-3949. doi: https://doi.org/10.1093/jxb/ert029
Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region3(2).
Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences115(18), 4613-4618. doi: https://doi.org/10.1073/pnas.1716999115
Gorbe, E., & Calatayud, A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae138, 24-35. doi: https://doi.org/10.1016/j.scienta.2012.02.002
Han, K. A. M., & Watchareeruetai, U. (2019, July). Classification of nutrient deficiency in black gram using deep convolutional neural networks. In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 277-282). IEEE. doi:  https://doi.org/10.1109/JCSSE.2019.8864224
Hochmuth, G. (2011). Iron (Fe) nutrition of plants. University of Florida If as Extension. Sl353, 1-8.
Hu, J., Li, D., Chen, G., Duan, Q., & Han, Y. (2012). Image segmentation method for crop nutrient deficiency based on fuzzy c-means clustering algorithm. Intelligent Automation & Soft Computing18(8), 1145-1155. doi: https://doi.org/10.1080/10798587.2008.10643318
Imani, A., Hosseinpour, S., Keyhani, A., & Azimzadeh, M. (2020). Modeling and Optimization of Oligonucleotide-Based Nanobiosensor Using Artificial Neural Network and Genetic Algorithm Based Procedure. Iranian Journal of Biosystems Engineering, 51(1), 171-181. (In Persian with English Abstract). https://dx.doi.org/10.22059/ijbse.2019.290631.665231
Meyer, G. E., Mehta, T., Kocher, M. F., Mortensen, D. A., & Samal, A. (1998). Textural imaging and discriminant analysis for distinguishingweeds for spot spraying. Transactions of the ASAE41(4), 1189-1197. doi: https://doi.org/10.13031/2013.17244
Misra, A., & Sharma, S. (2006). Critical Fe concentration and productivity of Java citronella. Rev Bras Plant Med8, 54-58.
Neaman, A., & Aguirre, L. (2007). Comparison of different methods for diagnosis of iron deficiency in avocado. Journal of Plant Nutrition30(7), 1097-1108. doi: https://doi.org/10.1080/01904160701394550
Römheld, V. (1987). Different strategies for iron acquisition in higher plants. Physiologia Plantarum70(2). doi:  https://doi.org/10.1111/j.1399-3054.1987.tb06137.x
Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of plant nutrition23(11-12), 1629-1643. doi: https://doi.org/10.1080/01904160009382129
Rout, G. R., & Sahoo, S. (2015). Role of iron in plant growth and metabolism. Reviews in Agricultural Science3, 1-24. doi: https://doi.org/10.7831/ras.3.1
Sun, J., Mao, H., & Yang, Y. (2009). THE RESEARCH ON THE JUDGMENT OF PADDY RICE’S NITROGEN DEFICIENCY BASED ON IMAGE. In Computer and Computing Technologies in Agriculture II, Volume 2: The Second IFIP International Conference on Computer and Computing Technologies in Agriculture (CCTA2008), October 18-20, 2008, Beijing, China 2 (pp. 1049-1054). Springer US. doi: https://doi.org/10.1007/978-1-4419-0211-5_30
Sun, Y., Gao, J., Wang, K., Shen, Z., & Chen, L. (2018). Utilization of machine vision to monitor the dynamic responses of rice leaf morphology and colour to nitrogen, phosphorus, and potassium deficiencies. Journal of Spectroscopy2018. doi: https://doi.org/10.1155/2018/1469314
Tewari, V. K., Kumar, A. A., Kumar, S. P., Pandey, V., & Chandel, N. S. (2013). Estimation of plant nitrogen content using digital image processing. Agric Eng Int: CIGR Journal15(2), 78-86.
Vasconcelos, M. W., & Grusak, M. A. (2014). Morpho-physiological parameters affecting iron deficiency chlorosis in soybean (Glycine max L.). Plant and soil374, 161-172. doi: https://doi.org/10.1007/s11104-013-1842-6
Vesali, F., Omid, M., Kaleita, A., & Mobli, H. (2015). Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Computers and Electronics in Agriculture116, 211-220. doi: https://doi.org/10.1016/j.compag.2015.06.012
Yu, K. Q., Zhao, Y. R., Li, X. L., Shao, Y. N., Liu, F., & He, Y. (2014). Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PloS one9(12), e116205. doi: https://doi.org/10.1371/journal.pone.0116205
Zohlen, A. (2000). Use of 1, 10‐phenanthroline in estimating metabolically active iron in plants. Communications in Soil Science and Plant Analysis31(3-4), 481-500. doi: https://doi.org/10.1080/00103620009370451