تاثیر آب مغناطیسی‌شده در شرایط هم‌زمان تنش خشکی و شوری بر عملکرد کیفی توت‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زارعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

2 گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

3 آزمایشگاه تحقیقاتی مشترک بین‌المللی کشاورزی و ایمنی محصولات کشاورزی، آزمایشگاه کلیدی ژنومیک و اصلاح مولکولی، جیانگسو، چین.

چکیده

با توجه به افزایش جمعیت و نیاز روزافزون به غذا، توسعه کشاورزی امری ضروری است. بر اساس محدودیت منابع آبی، مدیریت منابع آب در کشاورزی بسیار حائز اهمیت است و باید در تمامی مراحل تولید کشاورزی مورد توجه قرار گیرد. در این پژوهش، آزمایش به صورت فاکتوریل و در قالب طرح بلوک‌های کامل تصادفی با سه تکرار اجرا شد. فاکتور آبیاری در سه سطح (100 درصد FI (I1)، 80 درصد FI (I2) و 60 درصدFI (I3) ) و شوری آب در سه سطح (آب چاه (S1)، 20 میلی‌مولار یا 52/2 دسی‌زیمنس بر متر کلرید سدیم (S2) و 40 میلی‌مولار یا 06/5 دسی‌زیمنس بر متر کلرید سدیم (S3)) در دو حالت غیر مغناطیس (W1) و مغناطیس (W2) آزمایش شد. اثرات سطح آبیاری، شوری و نوع آب آبیاری بر خصوصیات کیفی میوه توت‌فرنگی شامل پروتئین کل، کلروفیل  a، کلروفیل b، کلروفیل کل، مواد جامد محلول کل، اسیدیته قابل تیتراسیون، ویتامین C و درصد قند مورد بررسی قرار گرفت. نتایج تجزیه واریانس نشان داد که تمامی عوامل در سطح احتمال 1 درصد بر خصوصیات کیفی میوه توت‌فرنگی تاثیر معنی‌داری داشته‌اند. در بین سطوح مختلف آبیاری، بیشترین میزان پروتئین کل، کلروفیل a، کلروفیل b و کلروفیل کل به‌ترتیب برابر 09/5، 39/2، 05/1 و 44/3 میلی‌گرم بر گرم در تیمار 100 درصد آبیاری و در بین سطوح مختلف شوری نیز به‌ترتیب 13/5، 49/2، 11/1 و 61/3 میلی‌گرم بر گرم در تیمار آب چاه به‌دست آمد. آب مغناطیسی نیز افزایش معنی‌داری در سطح احتمال 1 درصد بر خصوصیات کیفی میوه توت‌فرنگی داشت. پیشنهاد می‌شود که برای کاهش اثرات منفی شوری بر گیاهان، از ترکیبی از آب مغناطیسی و تنظیم سطح آبیاری استفاده شود. این ترکیب ممکن است به کاهش اثرات منفی شوری کمک کرده و در عین حال بهره‌وری آب در کشاورزی را افزایش دهد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The impact of magnetized water under combined drought and salinity stress conditions on the qualitative performance of strawberries

نویسندگان [English]

  • Mojtaba Khoshravesh 1
  • Masoud Pourgholam-Amiji 2
  • Reza Norooz-Valashedi 1
  • Hadi Yeilaghi 3
1 Department of Water Engineering, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
2 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
چکیده [English]

Given the increasing population and the growing demand for food, the development of agriculture is essential. Due to the limitations of water resources, managing water in agriculture is highly important and should be considered at every stage of agricultural production. This study conducted the experiment in a factorial design within a randomized complete block design with three replications. The irrigation factor was tested at three levels (100% FI (I1), 80% FI (I2), and 60% FI (I3)), and water salinity at three levels (well water (S1), 20 mM or 2.52 dS/m sodium chloride (S2), and 40 mM or 5.06 dS/m sodium chloride (S3)) in two conditions: non-magnetized (W1) and magnetized (W2) water. The effects of irrigation levels, salinity, and the type of irrigation water on the quality characteristics of strawberry fruit, including total protein, chlorophyll a, chlorophyll b, total chlorophyll, total soluble solids, titratable acidity, vitamin C, and sugar content, were examined. The analysis of variance results showed that all factors had a significant impact on the quality characteristics of strawberry fruit at the (p<0.01). Among the different irrigation levels, the highest amounts of total protein, chlorophyll a, chlorophyll b, and total chlorophyll were 5.09, 2.39, 1.05, and 3.44 mg per gram, respectively, in the 100% irrigation treatment, while among the different salinity levels, these values were 5.13, 2.49, 1.11, and 3.61 mg per gram, respectively, in the well water treatment. Magnetized water also had a significant effect at the 1% probability level on the quality characteristics of strawberry fruit.

کلیدواژه‌ها [English]

  • Combined Stress
  • Deficit Irrigation
  • Protein
  • Sodium Chloride
  • Vitamin C

EXTENDED ABSTRACT

 

Introduction

Given the increasing population and the growing demand for food, agricultural development is essential. Due to the limited water resources, effective water resource management in agriculture is of great importance and must be considered at all stages of agricultural production. On the other hand, water resource limitations pose a challenge to agricultural development, necessitating a strong focus on the optimal use of available water resources, including unconventional waters. Magnetized water is one of the methods used to improve water and soil quality.

Materials and Methods

The experiment was conducted in a factorial design within a randomized complete block design with three replications. The irrigation factor was tested at three levels (100% FI (I1), 80% FI (I2), and 60% FI (I3)), and water salinity at three levels (well water (S1), 20 mM sodium chloride (S2), and 40 mM sodium chloride (S3)) in two conditions: non-magnetized (W1) and magnetized (W2) water. This study examined the effects of irrigation levels, salinity, and the type of irrigation water on the qualitative properties of strawberry fruit, including total protein, chlorophyll a, chlorophyll b, total chlorophyll, total soluble solids, titratable acidity, vitamin C, and sugar content.

Results and Discussion

The analysis of variance results showed that all factors had a significant impact on the qualitative properties of strawberry fruit at the 1% probability level. Among the different irrigation levels, the highest amounts of total protein, chlorophyll a, chlorophyll b, and total chlorophyll were 5.09, 2.39, 1.05, and 3.44 mg per gram, respectively, in the 100% irrigation treatment. Among the different salinity levels, these values were 5.13, 2.49, 1.11, and 3.61 mg per gram, respectively, in the well water treatment. Furthermore, the highest levels of total soluble solids, titratable acidity, vitamin C, and sugar content were 13.67%, 0.67%, 31.17 mg per 100 grams, and 36.49 mg per gram, respectively, in the 60% irrigation treatment. Among the different salinity levels, these values were 13.82%, 0.69%, 31.65 mg per 100 grams, and 37.04 mg per gram, respectively, in the 40 mM sodium chloride treatment. Magnetized water also had a significant effect at the 1% probability level on the qualitative properties of strawberry fruit.

Conclusion

Overall, the increase in electrical conductivity in the nutrient solution led to reduced water uptake and thus decreased its osmotic potential, resulting in lower product quality. Finally, due to the observed positive effects on qualitative properties, it is recommended to use this method for producing high-quality products with greater nutritional value in cultivation systems. Additionally, to reduce the negative effects of salinity on plants, a combination of magnetized water and regulated irrigation levels is suggested. This combination may help mitigate the negative effects of salinity while simultaneously enhancing water productivity in agriculture.

Author Contributions

M.K: Conceptualization, Methodology, Supervision, Formal Analysis and Investigation, Final Review, Funding Acquisition. M.P.A: Data Preparation and Review, Software, Resources, Results Interpretation, Writing-Original Draft Preparation, Visualization, Project Administration. R.N.V: Results Interpretation, Review and Editing, Final report review. H.Y: Investigation, Data Curation, Validation, Writing—Review.

“All authors have read and agreed to the published version of the manuscript.”

Data Availability Statement

The datasets generated and/or analysed during the current study are not publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are available from the corresponding author on reasonable request. The datasets are not publicly accessible because this article was extracted from a research project. Because this work is still ongoing, the data cannot be released to the public.

 

Acknowledgements

This study was supported by funding from Sari Agricultural Sciences and Natural Resources University (Grant No.: 02-1402-08). Therefore, the authors of the article would like to thank for their great cooperation and for providing the relevant laboratories. Also, the authors would like to thank all participants of the present study.

Ethical considerations

The author declares that there is no conflict of interest regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancies have been completely observed by the author.

Aghaee Fard, F., Babalar, M., & Ahmadi, A. (2014). The effect of salicylic acid foliar spraying on qualitative characters of strawberry fruit (Fragaria x ananassa cv. Camarosa). Iranian Journal of Horticultural Science, 45(4), 325-334. (In Persian).
Ahmadi Mirabad, A., Lotfi, M., & Rouzban, M. R. (2013). Effect of water deficit stress on growth, yield and sugar percentage of melon (Cucumis melo L.). International Journal of Agriculture and Crop Sciences, 5(22), 2778-2782.
Ahmadi, A., & Siosehmardeh, A. (2004). Effect of drought stress on soluble carbohydrate, chlorophyll and proline in four wheat cultivars adapted to different climates of Iran. Iranian Journal of Horticultural Science, 35(3), 753-763.
Ahmed, M. E. M., & EL-Kader, N. I. A. B. D. (2016). The influence of magnetic water and water regimes on soil salinity, growth, yield and tubers quality of potato plants. Middle East Journal of Agriculture Research, 5(2), 132-143.
Algozari, H., & Yao, A. (2006). Effect of the magnetizing of water and fertilizers on some chemical parameters of soil and growth of maize. MS.c. Thesis. University of Baghdad, Baghdad, Iraq.
Al-Khazan, M., Mohamed Abdullatif, B., & AlAssaf, N. (2011). Effects of magnetically treated water on water status, chlorophyll pigments and some elements content of Jojoba (Simmondsia chinensis L.) at different growth stages. African Journal of Environmental Science and Technology, 5(9), 722-731.
Arab-Tazhan-Dareh, A., Ismaili, A., Rezaei-Nezhad, A., Karami, F., & Gharghani, A. (2016). nvestigation of orrelation and causality relationships of physiological and phenological characteristics and grouping of strawberry (Fragaria × ananassa Duch) genotypes. Plant Journal of Physiology and Biology, 1(1), 39-50. (In Persian).
Asadi Aghdam, O., Tabatabaei, S. J., & Hajilou, J. (2013). Effect of partial root zone drying on quantitative and qualitative characteristics of strawberry (Fragaria Ananassa Cv. Selva). Journal of Crop Production and Processing, 3(8), 73-81. (In Persian).
Bakhshabadi, H., Mirzaei, H., Ghodsvali, A., Jafari, S.M., Ziaiifar, A.M., & Bigbabaie, A. (2017). Optimizing the
Eextraction process of oil from black cumin seeds by using pulsed electric field (PEF) Pretreatment. Journal of Research and Innovation in Food Science and Technology, 6(3), 221-231.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation and microgram quantities of protein utilizing the principle of protein-dye binding. Annual Review of Biochemistry, 72, 248-254.
Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental botany, 58(15-16), 4245-4255.
Darabi, M., Dashti, F., Gholami, M., Mosaddeghi, M. R., & Mirfattah, S. M. (2011). Effect of drought stress on yield and morphological and physiological characteristics of Allium ampeloperasum. Iranian Journal of Horticultural Science, 42(2), 95-103. (In Persian).
Davies, J., & Hobson, G. (1981). The constituents of tomato fruit – the influence of environment, nutrition and genotype. Critical Rev. in Food Science and Nutrition, 15, 205-281. DOI: 10.1080/10408398109527317
De Pascale, S., Orsini, F., Vallone, S. & Barbieri, G. (2009). Crop season effects on yield and quality of hydroponically grown Brassica rapa var. sylvestris. Acta Horticulturae, 807, 427-432.
Dolatshah, M., Rezaeinejad, A., & Gholami, M. (2014). The effect of salinity stress on yield and some physical and biochemical characteristics of the strawberry cultivar "Camarosa". Plant Production Technology, 14(2): 127-138. (In Persian).
Garcı´a-Valenzuela, X., Garcı´a-Moya, E., Rascon-Cruz, Q., Herrera-Estrella, L. & Aguado-Santacruz, G. A. (2005). Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of Plant Physiology, 162, 650-661.
Ghadami Firouzabadi, A., Khoshravesh, M., Shirazi, P., & Zare Abyaneh, H. (2016). Effect of irrigation with magnetized water on the yield and biomass of soybean var. DPX under water deficit and salinity stress. Water Research in Agriculture, 30(1), 131-143. (In Persian).
Ghasemi, H., Amiri Fahliani, R., Kavousi, B., & Dehdari, M. (2018). The response of some strawberry cultivars (Fragaria×ananssa Duch.) to a lack of water in terms of leaf area and some quantitative and qualitative characteristics of the fruit. Journal of Soil and Plant Interactions, 9(1): 25-38. Doi: 10.29252/ejgcst.9.1.25. (In Persian).
Giné Bordonaba J., & Terry, L. A. (2010). Manipulating the taste-related composition of strawberry fruits (Fragaria x ananassa) from different cultivars using deficit irrigation. Food Chemistry, 122, 1020-1026.
Gine-Bordonaba, J., & Terry, L. A. (2016). Effect of deficit irrigation and methyl jasmonate application on the composition of strawberry (Fragaria×ananassa) fruit and leaves. Scientia Horticulturae, 199, 63-70.
Gulen, H. E., Turhan, E. & Eris, A. (2006). Changes in peroxidase activities and soluble proteins in strawberry varieties under salt stress. Acta Physiologia Plantarum, 28(2), 109-116.
Haghighi, M. (2010). Effect of partial root zone drying on water relation, growth, yield and some quantitative characteristics of tomato. Iranian Journal of Greenhouse Culture Science, 12(2), 26-31. (In Farsi).
Hendry, G. A. F., & Price, A. H. (1993). Stress indicators: chlorophylls and carotenoids. In: Hendry, G.A.F., & J.P. Grime. (Eds.), Methods in Comparative Plant Ecology, Chapman and Hall, London.
Hepaksoy, S., Ben-Asher, J., de Malach, Y., David, I., Sagih, M., & Bravdo, B. (2006). Grapevine irrigation with saline water: Effect of rootstocks on quality and yield of cabernet sauvignon. Journal of Plant Nutrition, 29, 783-795.
Izadyar, S. A., Sadeghi, H., & Bahmanyar, M. A. (2014). Effect of substrates and chilling requirement n quantitative and qualitative attributes of three strawberries cultivars. Iranian Journal of Horticultural Science, 45(2), 217-223. Doi: 10.22059/ijhs.2014.51963. (In Persian).
Karimpour, F., Khoshravesh, M., Gholami Sefidkouhi, M. A., & Akbarpour, V. (2024). Response of the medicinal plant Salvia L. to magnetized saline irrigation water. Journal of Water Research in Agriculture, 37(4), 401-413. (In Persian).
Karlidag, H., Yildirim, E., & Turan, M. (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria×ananassa). Scientia Horticulturae, 130, 133-140.
Kaya, C., Kirnak, H., Higgs, D., & Saltali, K. (2002). Supplementary calcium enhances plant growth at fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93, 65-74.
Keutgen, A. & Pawelzik, E. (2008). Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry, 111, 642-647.
Keutgen, A. J., & Keutgen, N. (2003). Influence of NaCl salinity stress on fruit quality in strawberry. Acta Horticulture, 609, 155-157.
Khodamoradi, P., Amiri, J., & Dovlati, B. (2018). Influence of humic acid on some antioxidant enzymes activity and compatible metabolites in strawberry (Fragaria × ananassa Duch. cv. Sabrina) under salinity stress. Pomology Research, 2(2), 109-135. (In Persian).
Khoshravesh, M., & Kiani, A.R. (2022). Magnetized Water Technology, Principles and Applications. Sari Agricultural and Natural Resources University Press, 136 pp.
Khoshravesh, M., & Pourgholam-Amiji, M. (2024). The effect of irrigation with magnetized wastewater on soil heavy metals, water productivity and heavy metals in aerial parts and grains of maize. Applied Water Science, 14(8), 182.
Khoshravesh, M., & Pourgholam-Amiji, M. (2023). Effect of water stress on strawberry yield and yield components using magnetized water. Journal of Water Research in Agriculture, 36(4), 441-453. (In Persian).
Khoshravesh, M., Erfanian, F., & Pourgholam-Amiji, M. (2021a). Effect of irrigation with treated magnetic effluent on yield and yield components of maize. Water Management in Agriculture, 8(1), 115-128. (In Persian).
Khoshravesh, M., Hosseini, S. M., & Pourgholam-Amiji, M. (2021b). The effect of irrigation with magnetically treated effluent on chemical properties and soil heavy metals. Iranian Journal of Soil and Water Research, 52(8), 2191-2203. (In Persian).
Miller, N. J., & Rice-Evans, C. A. (1997). The relative contributions of ascorbic acid and phenolic antioxidants to the total antioxidant activity of orange and apple fruit juices and black current drink. Food Chemistry, 60(4), 331-337.
Nuruddin, M. M., Madramootoo, A. C., & Dodds, G. T. (2003). Effects of water sterres at different growth stages on greenhouse tomato yield and quality. Horticultural Science, 38(7), 1389-1393.
Oraki, H., Prhizkar-Khanjani, F., & Aghaalikhana, M. (2012). Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower (Helianthus annuus L.) hybrids. African Journal of Biotechnology, 11(1), 164-168.
Oszmianski, J., & Wojdylo, A. (2009). Comparative study of phenolic content and antioxidant activity of strawberry puree, clear, and cloudy juices. European Food Research and Technology, 228(4), 623–631.
Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60, 324-349.
Petersen, K. K., Willumsen, J., & Kaack. K. (1998). Composition and taste of tomatoes as affected by increased salinity and different salinity sources. Journal of Horticultural Science and Biotechnology, 73, 205-215.
Pirlak, L., & Eşitken, A. (2004). Salinity effects on growth, proline and ion accumulation in strawberry plants. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 54 (3), 189-192.
Pourgholam-Amiji, M., Khoshravesh, M., Divband Hafshejani, L., & Ghadami Firouzabadi, A. (2022). The effect of irrigation with treated magnetic effluent on water productivity of maize. Iranian Journal of Irrigation & Drainage, 16(1), 243-253.
Raeini-Sarjaz, M., & Chalavi, V. (2011). Effects of water stress and constitutive expression of a drought induced chitinase gene on water use efficiency and carbon isotope composition of strawberry. Journal of Applied Botany and Food Quality, 84, 90-94.
Ranjbar, R., Eshghi, S., & Rostami, M. (2011). The effect of foliar application of nickel sulfate and urea on reproductive growth and quantitative and qualitative characteristics of strawberry (Fragaria ananassa Duch. cv. Pajaro). Soil and Plant Relations, 2(7), 41-48.
Rawson, H. M., Iong, M. J., & Munns, R. (1988). Growth and development in NaCl treated plants. Journal of Plant Physiology, 15, 519-527.
Rosa-Ibara, M. D. L., & Maiti, R. K. (1995). Biochemical mechanism in glossy sorghum lines for resistance to salinity stress. Journal of Plant Physiology, 146, 515-519.
Sadeghipour, O., & Aghaei, P. (2013). Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. Journal of Biodiversity and Environmental Sciences, 3(1), 37-43.
Salehi, S., Babalar, M., Taghavi, T. S., & Askari Cheshmeh, M. A. (2014). Effect of Salicylic Acid Spray on Growth, Yield & Quality Attributes of Strawberry cv. Camarosa in Hydroponic Culture. Iranian Journal of Horticultural Science, 44(3), 349-357. Doi: 10.22059/ijhs.2013.36005. (In Persian).
Seyed lor, L., Tabatabaei, S. J., & Fallahi, E. (2009). The effect of silicon on the growth and yield of strawberry grown under saline conditions. Horticultural Science, 23(1), 88-95. Doi: https://doi.org/10.22067/jhorts4.v1388i1.1915.
Seyedi Morghakai, A., Ebadi, A., & Babalar, M. (2014). Effect of potassium levels in nutrient solution, harvest season, and plant density on quantity and quality of strawberry fruit (Cv. Selva) in hydroponic system conditions. Iranian Journal of Horticultural Science, 44(4), 423-429. Doi: 10.22059/ijhs.2013.50366. (In Persian).
Sezen, M. S., Gulendam, C., Yazar, A., Tekin, S., & Kapur, B. (2010). Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. S. R. E. A. J. 5(1): 041-048, Available online at http://www.academicjournals.org/SRE
Shahmohammadi, M., Arminian, A., MohammadKhani, A., & Azizian, A. (2020). Evaluating the quantitative and qualitative characteristics of some strawberry genotypes using PLS-PM approach. Journal of Plant Production Research, 27(1), 243-262. (In Persian).
Tabatabaei, S. J., Gregory, P. J., & Hadley. P. (2004). Distribution of nutrients in the root zone affects yield, quality and blossom end rot of tomato fruits. Journal of Horticultural Science and Biotechnology, 79, 158-163.
Talebzadeh, Z., Mahdizadeh, H., Ejtehadi, H., & Abrishamchi, P. (2009). Investigation of salt tolerance threshold in two tomato cultivars. Plant Ecophysiology, 1(1), 64-78. (In Persian).
Tavusi, M., & ShahinRokhsar, P. (2010). The effect of four subestrates on yield and some parameters
on the performance strawberries grown in soilless culture. Journal of Agricultural Sciences, 13, 83-94.
Tuzel, I. H., Tuzel, Y., Gul, A., Altunlu, H., & Eltez, R. Z. (2001). Effect of different irrigation schedules, substrate and substrate volume on fruit quality and yield of greenhouse tomato. Acta Horticulture, 548: 285-291.
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: toward genetic engineering for stress tolerance. Planta, 218(1), 1-14.
Yadollahi, A. H., Khoshravesh, M., & Gholami Sefidkouhi, M. A. (2022). Effect of regulated deficit irrigation with magnetized water on quantitative, qualitative properties and water productivity of green pea. Journal of Water Research in Agriculture, 35(4), 373-389. (In Persian).
Yusefi, M., Tabatabaei, S. J., Hajilu, J., & Mahna, N. (2011). The effect of partial root salinization on the yield and fruit quality in strawberry. Agricultural Science and Sustainable Production, 21(1), 135-144. (In Persian).
Yusuf, K. O., & AO, O. (2017). Effect of magnetic treatment of water on evapotranspiration of tomato. Arid Zone Journal of Engineering, Technology and Environment, 13(1), 86-96.
Zhao, G. Q., Ma, B. L., & Reh, C. Z. (2007). Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Journal of Crop Science, 4, 123-131.