مدل‌سازی اراضی زهکشی‌شده محصول نیشکر در کشت و صنعت حکیم فارابی خوزستان با استفاده از دیدگاه پیوند آب-محیط‌زیست-غذا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی، دانشگاه تهران، تهران، ایران

2 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

3 گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران، اهواز، ایران

چکیده

نیشکر گیاهی است که بیشترین نیاز آبی خود را در فصل تابستان دارد که کمترین ریزش‌های جوی اتفاق می‌افتد و نیاز به آبیاری این گیاه وجود دارد. در این پژوهش شبیه‌سازی و مدل‌سازی کشت گیاه نیشکر با  دیدگاه پیوند آب – محیط‌زیست – غذا و با رویکرد پویایی سیستم در شرکت کشت و صنعت حکیم فارابی خوزستان انجام شد. مدل سازی این پژوهش در محیط نرم افزار Vensim انجام گردید. مدل ایجاد شده یک مدل یکپارچه و به‌هم پیوسته بوده که شامل بخش‌های شبیه‌سازی آب مصرفی، تولید محصول، حجم و شوری زهاب و شوری خاک است. از اطلاعات سه سال 1395 تا 1397 برای واسنجی و از اطلاعات دو سال 1398 تا 1399 برای صحت‌سنجی مدل استفاده گردید. برای ارزیابی نتایج مدل از پارامترهای آماری MAE، MBE و MAPE استفاده شد. نتایج مدل‌سازی نشان داد که مدل در دوره واسنجی با شاخصMAE برابر با 31/6 تن بر هکتار برای عملکرد محصول، 56/53 میلی‌متر برای حجم زهاب، 21/1 دسی‌زیمنس بر متر برای شوری زهاب و 09/0 دسی‌زیمنس بر متر برای شوری خاک از دقت بالایی برخوردار است. همچنین نتایج همین شاخص در دوره صحت‌سنجی که برابر با 04/3 تن بر هکتار برای عملکرد محصول، 76/48 میلی‌متر برای حجم زهاب، 11/1 دسی زیمنس بر متر برای شوری زهاب و 04/0 دسی‌زیمنس بر متر برای شوری خاک بود نشان داد که مدل از دقت نسبتا بالایی در شبیه‌سازی شرایط موجود برخوردار است. همچنین بیشترین بهره‌وری آب به میزان 75/3 کیلوگرم بر مترمکعب، در سال‌ 1398به‌دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling of Drained Lands of Sugarcane Crop in Hakim Farabi Khuzestan Agro-Industry Using the Perspective of Water-Environment-Food Nexus

نویسندگان [English]

  • Mohammad Hooshmand 1
  • Hamed Ebrahimian 1
  • Teymour Sohrabi 1
  • Hamed Nozari 2
  • Abd Ali Naseri 3
1 Department of Irrigation and Reclamation Engineering. Faculty of Agriculture, University of Tehran, Tehran, Iran
2 Department of Water Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
3 Department of Irrigation and Drainage, Faculty of Water and Environmental Engineering, Shahid Chamran University, Ahvaz, Iran
چکیده [English]

Sugarcane is a plant that has the most water requirement in the summer when the least rainfall occurs, and there is a need to irrigate this plant. In this research, the simulation and modeling of sugarcane cultivation with a focus on the water-environment-food nexus, utilizing the system dynamics approach, have been conducted at the Hakim Farabi Khuzestan Agro-Industry Company. This research was modeled using Vensim software. The model is an integrated and interconnected simulation of water consumption, product production, drainage water volume, salinity, and soil salinity. The information of three years 2015 to 2017 was used for calibration and the information of two years 2018 to 2019 was used to validate the model. MAE, MBE, and MAPE statistical parameters were used to evaluate the model results. The modeling results showed that the model has high accuracy in the calibration period with an MAE index of 6.31 ton/ha for crop yield, 53.56 mm for water drainage volume, 1.21 dS/m for water drainage salinity, and 0.09 dS/m for soil salinity. Also, the results of the same index in the validation period, which were 3.04 ton/ha for crop yield, 48.76 mm for water drainage volume, 1.11 dS/m for water drainage salinity, and 0.04 dS/m for soil salinity, indicate that the model is highly accurate in simulating the existing conditions. The highest water productivity was achieved at a rate of 3.75 kg/m³ in 2019.

کلیدواژه‌ها [English]

  • System Dynamics
  • Simulation
  • Nexus

EXTENDED ABSTRACT

 

Introcution

The water-energy-food nexus is a term used to describe the interdependent relationship between water, energy, and agricultural production. It also refers to the competition between energy and food production for water resources. The interdependence among water, energy, and food resources means that an increase in demand for one resource can lead to a rise in demand for another. Likewise, the cost of one resource can influence the productivity of another. Water is essential in the water-energy-food nexus because it is irreplaceable. Integrating all the system's drivers under a framework is necessary to achieve a sustainable, safe, and flexible water-energy-food system. This framework emphasizes the importance of social and economic dimensions in developing the water-energy-food system (Hoff, 2011).

The concept of system dynamics involves the changes in input and output components, including the interactions and feedback among elements in the system over time. This method can account for non-linear and cause-and-effect relationships.

Materials and Methods

Sugarcane is a high-water-demand crop, especially in Khuzestan province, where temperatures can exceed 50 degrees Celsius in the summer, increasing water requirements. Hakim Farabi Agro-Industry Company is one of the eight subsidiary companies of Khuzestan Sugarcane Development and Ancillary Industries Holding, the largest sugar producer in Iran. Farabi Company was selected for this research due to the environmental issues created by the region's sugarcane agro-industries.

This research developed causal diagrams concerning water consumption, crop production and drainage water volume and quality using Vensim software within the system dynamics framework. These diagrams were then transformed into stock and flow models. Flows represent system variables, while stocks represent accumulations within the system. Flows serve as the input and output of stocks, determining their rate of change.

After creating the model, we first conducted a sensitivity analysis. We used data from three years (2015 to 2017) to calibrate the model and data from two years (2018 to 2019) to validate the model. The model validation was based on the parameters to which the model was sensitive. We used MAE, MBE and MAPE statistical indices to evaluate the model.

Results

The sensitivity analysis results provide valuable insights into the model's performance. They indicate that the model is most sensitive to soil moisture parameters at the point of permanent wilting, soil moisture at field capacity, and porosity, with sensitivity indices of 6.014, 1.428, and 1, respectively. This means that small changes in these parameters can significantly affect the model's output. On the other hand, the model is not sensitive to the parameters of root development depth and hydraulic conductivity above the drain pipe. This information is crucial because it helps us to understand the strengths and limitations of the model.

The crop yield simulation results for the calibration period indicate a Mean Absolute Error (MAE) of 6.31, a Mean Bias Error (MBE) of -0.89, and a Mean Absolute Percentage Error (MAPE) of 7.99, demonstrating the model's high accuracy. During the validation period, the MAE is 3.04, the MBE is -3.04, and the MAPE is 3.66, further confirming the model's reliability. The model achieved its highest accuracy in simulating crop yield in 2018, while its lowest accuracy occurred in 2015.

The simulation of drainage volume indicates that the model exhibits relatively high accuracy in estimating this parameter. The results reveal an MAE of 53.56, MBE of 53.56, and MAPE of 3.74 during the calibration period, underscoring its precision. During the validation period, the model demonstrates an MAE of 48.76, an MBE of -22.97, and a MAPE of 3.60, further confirming its high accuracy. The model achieved its highest accuracy in simulating drainage volume in 2017 and its lowest in 2019.

The model's performance in simulating drainage water salinity was assessed using various metrics. During the calibration period, the MAE was 1.21, the MBE was 1.21, and the MAPE was 12.56. For the validation period, the MAE was 1.11, the MBE was 1.11, and the MAPE was 12.40. These results indicate that the model's accuracy is satisfactory. Additionally, the model demonstrated the highest accuracy in 2018 and the lowest in 2016.

The results of the soil salinity simulation indicate that the model demonstrated high accuracy. During the calibration period, the model achieved an MAE of 0.09, MBE of -0.04, and MAPE of 3.65. In the validation period, the model's performance improved further, with an MAE of 0.04, an MBE of -0.04, and a MAPE of 1.94. The model's highest accuracy was recorded as an annual average in 2018, while the lowest accuracy occurred in 2016.

Conclusion

The results obtained from different parts of the model showed high accuracy in simulating existing conditions. This suggests that the model can predict the crop yield, volume, and salinity of drainage water in Hakim Farabi Agro-industry Company.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

 Not applicableAcknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Allam, M., & Eltahir, E. (2019). Water-Energy-Food Nexus Sustainability in the Upper Blue Nile (UBN) Basin. Frontiers in Environmental Science. 7(5), 1-12.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. 1998. FAO Irrigation and drainage paper No. 56. Rome: Food and Agriculture Organization of the United Nations56(97), e156.
Bazilian, M., Rogner, H., Howells, M., Hermann, S., Arent, D., Gielen, D. & Yumkella, K. K. (2011). Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy policy, 39(12), 7896-7906.
Biggs, E. M., Bruce, E., Boruff, B., Duncan, J. M., Horsley, J., Pauli, N. & Haworth, B. (2015). Sustainable development and the water–energy–food nexus: A perspective on livelihoods. Environmental Science & Policy, 54, 389-397.
Campana, P. E., Lastanao, P., Zainali, S., Zhang, J., Landelius, T., & Melton, F. (2022). Towards an operational irrigation management system for Sweden with a water–food–energy nexus perspective. Agricultural Water Management271, 107734.
Chang, Y., Li, G., Yao, Y., Zhang, L., & Yu, C. (2016). Quantifying the water-energy-food nexus: current status and trends. Energies, 9(2), 65.
De Vito, R., Portoghese, I., Pagano, A., Fratino, U., & Vurro, M. (2017). An index-based approach for the sustainability assessment of irrigation practice based on the water-energy-food nexus framework. Advances in water resources, 110, 423-436.
Dorenbos, J., & Kassam, AH. (1979). Yield Response to Water, Irrigation & Drainage paper No. 33. FAO, Rome.
Endo, A., Tsurita, I., Burnett, K., & Orencio, P. M. (2017). A review of the current state of research on the water, energy, and food nexus. Journal of Hydrology: Regional Studies, 11, 20-30.
Hailemariam, W. G., Silalertruksa, T., Gheewala, S. H., & Jakrawatana, N. (2019). Water–energy–food nexus of sugarcane production in Ethiopia. Environmental Engineering Science36(7), 798-807.
Hamdy, A., Driouech, N., & Hmid, A. 2014. The water-energy-food security nexus in the mediterranean: challenges and opportunities. Paper presented at the 5th International scientific agricultural symposium, Jahorina, Bosnia and Herzegovina.
Hoff, H. (2011). Understanding the nexus. Background paper for the Bonn 2011 Conference: The water, energy and food security nexus. Stockholm Environment Institute, Stockholm, Sweden.
Jafari, J., Nazemi, A. H., Sadraddini, A. A., & Nozari, H. (2020). Simulation of quality and quantity of outflow from subsurface drains, using system dynamics. Iranian Water Research Journal, 14(37): 1-9. (In Persian)
Javadi, A., Mashal, M., & Ebrahimian, H. (2015). Performance and Sensitivity Analysis of Infiltration Equations under Different Initial and Boundary Conditions in Furrow Irrigation. Water Research in Agriculture, 28(4): 787-799. (In Persian)
Kitani, O. (1999). CIGR Handbook of Agricultural Engineering. Vol, V, Energy and Biomass Engineering. ASAE publication, ST Joseph, MI.
Li, Y.H., & Dong, B. (1998). Real-Time irrigation scheduling model for cotton. Water and the environment: Innovative Issues in irrigation and drainage, 197-204.
Lu, P., Yang, Y., Luo, W., Zhang, Y., & Jia, Z. (2023). Numerical Simulation of Soil Water–Salt Dynamics and Agricultural Production in Reclaiming Coastal Areas Using Subsurface Pipe Drainage. Agronomy13(2), 588.
Niva, V., Cai, J., Taka, M., Kummu, M., & Varis, O. (2020). China’s sustainable water-energy-food nexus by 2030: Impacts of urbanization on sectoral water demand. Journal of Cleaner Production251, 119755.
Nozari, H., & Azadi, S. (2021). System dynamics simulation of crop yield under different irrigation water quality and quantity. Water Practice & Technology16(1), 196-209. (In Persian)
Nozari, H., Heydari, M., & Azadi, S. (2014). Performance and Profitability Simulation of Crops under Different Managements of Irrigation Water Using System Dynamics Approach. Water Research in Agriculture, 27(4): 565-576. (In Persian)
Nozary, H., Liaghat, M., & Khayat Kholghi, M. (2009). Simulation of water and salt inflow in subsurface Drainage Systems, using system dynamics. Iranian Journal of lrrigation and drainage, 2(3): 28-39. (In Persian)
Parchami-Araghi, F., Samipour, F., & Sadeghi, A. (2020). Application of SWAP Model for Modelling a Sugarcane Farming System with Controlled Subsurface Drainage. Water Research in Agriculture, 34(1), 51-64. (In Persian)
Psomas, A., Dagalaki, V., Panagopoulos, Y., Konsta, D., & Mimikou, M. (2016). Sustainable agricultural water management in Pinios River basin using remote sensing and hydrologic modeling. Procedia engineering, 162, 277-283.
Rahmani, M., Jahromi, S. H. M., & Darvishi, H. H. (2023). SD-DSS model of sustainable groundwater resources management using the water-food-energy security Nexus in Alborz Province. Ain Shams Engineering Journal14(1), 101812.
Ritzema, H. P. (2006). Drainage principles and applications (No. 16). ILRI, Wageningen, Netherlands.
Sadeghi, S. H., Moghadam, E. S., Delavar, M., & Zarghami, M. (2020). Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale. Agricultural Water Management233, 106071.
Silalertruksa, T., & Gheewala, S. H. (2018). Land-water-energy nexus of sugarcane production in Thailand. Journal of cleaner production, 182, 521-528.
Smidt, S. J., Haacker, E. M., Kendall, A. D., Deines, J. M., Pei, L., Cotterman, K. A., & Hyndman, D. W. (2016). Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Science of the Total Environment, 566, 988-1001.
Taghizadeh, Z., Verdinejad, V., Ebrahimian, H., & Khanmohammadi, N. (2013). Field Evaluation and Analysis of Surface Irrigation System with WinSRFR (Case Study Furrow Irrigation). Water and Soil26(6), 1450-1459.
Wicaksono, A., & Kang, D. (2019). Nationwide simulation of water, energy, and food nexus: Case study in South Korea and Indonesia. Journal of Hydro-environment Research, 22, 70-87.
Xu, H., Tian, Z., He, X., Wang, J., Sun, L., Fischer, G., & Kent, C. (2019). Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agricultural water management, 213, 594-604.