مدل‌سازی طوفان‌های گرد و غبار با استفاده از مدل هیبریدی سه‌گانه GRNN- SVM- LSTM (مطالعه موردی: استان سیستان و بلوچستان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 دانشجوی دکتری، گروه مهندسی احیاء مناطق خشک و کوهستانی، دانشکده مناطق طبیعی، دانشگاه تهران، کرج، ایران.

10.22059/ijswr.2025.385882.669844

چکیده

هدف از این پژوهش مقایسه عملکرد فرامدل‌های انفرادی GRNN و SVM با مدل هیبریدی سه‌گانه GRNN- SVM- LSTM به‌منظور پیش‌بینی فراوانی روزهای همراه با طوفان گرد و غبار در فصل‌ آتی می‌باشد. بدین منظور از داده‌های ساعتی گرد و غبار در هشت سینوپ و کدهای سازمان جهانی هواشناسی در پنج ایستگاه سینوپتیک استان سیستان و بلوچستان در طول دوره آماری 40 ساله (2020- 1980) استفاده شده است. معیارهای R، RMSE، MAE و NS به‌منظور ارزیابی و مقایسه مدل‌ها استفاده شدند. نتایج این پژوهش نشان داد که مدل هیبرید سه‌گانه پیشنهادی نسبت به سایر روش‌ها بیش‌ترین عملکرد را داشته است. همچنین بیش‌ترین دقت این مدل در ترکیبات فصلی 1 و 2 آن به‌منظور پیش‌بینی شاخص FDSD حاصل شده است. پس از آن، فرامدل انفرادی SVM در رتبه‌بندی از لحاظ عملکرد قرار گرفت. این مدل نیز در ترکیبات یک و دو بهترین عملکرد را داشت. مدل شبکه عصبی رگرسیون تعمیم‌یافته نیز در ترکیبات 1 و 2 عملکرد نسبتاً بهتری را در مقایسه با ترکیب چهارم نمایش داده است. مدل هیبریدی سه‌گانه GRNN- SVM- LSTM با ریشه میانگین مربعات خطا (501/0-523/0RMSE= )، ضریب همبستگی ( 989/0- 999/0 R= )، میانگین قدرمطلق خطا (421/0- 441/0 =MAE)و ضریب نش- ساتکلیف (893/0- 907/0= NS)بهترین عملکرد را نسبت به سایر مدل‌های استفاده‌شده برای پیش‌بینی شاخص FDSD نمایش داده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dust Storm Modeling Using the Triple Hybrid Model GRNN-SVM-LSTM (Case Study: Sistan and Baluchestan Province)

نویسندگان [English]

  • Mohammad Ansari ghojghar 1
  • Paria Pourmohammad 2
1 Assistant professor, Department of reclamation of arid and mountainous regions Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
2 Ph.D candidate. Department of reclamation of arid and mountainous regions Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
چکیده [English]

Dust storms pose significant environmental and economic challenges, particularly in arid regions like Sistan-Baluchestan Province, Iran. This study aims to compare the performance of individual models (GRNN and SVM) with a triple hybrid model (GRNN-SVM-LSTM) for forecasting the frequency of dust storm days (FDSD). Using hourly dust data from eight SYNOP codes of the World Meteorological Organization across five synoptic stations, spanning a 40-year period (1980–2020), the models were evaluated based on key performance metrics: Correlation Coefficient (R), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency (NS). The triple hybrid model outperformed all other approaches, achieving the highest predictive accuracy in seasonal combinations 1 and 2. The SVM model ranked second, while the GRNN model performed relatively better in combinations 1 and 2 compared to combination 4. Overall, the GRNN-SVM-LSTM model demonstrated superior predictive performance for FDSD, with RMSE = 0.523–0.501, R = 0.999–0.989, MAE = 0.441–0.421, and NS = 0.907–0.893. These findings highlight the potential of the proposed model for improving dust storm forecasting and developing early warning systems.

کلیدواژه‌ها [English]

  • Dust
  • Prediction
  • Support Vector Machine (SVM)
  • Generalized Regression Neural Network (GRNN)
  • Sistan and Baluchestan

EXTENDED ABSTRACT

 

Introduction

Dust storms are among the most significant natural hazards affecting arid and semi-arid regions, particularly in Iran, where they cause considerable environmental, health, and economic damage. These phenomena are driven by a combination of climatic factors and human activities, including land-use changes and deforestation. This study aims to evaluate the performance of a hybrid machine learning model that integrates General Regression Neural Network (GRNN), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) for predicting the frequency of dust storm days (FDSD). The analysis focuses on five meteorological stations in Sistan and Baluchestan Province, utilizing a 40-year dataset (1980–2020) comprising hourly visibility and weather codes defined by the World Meteorological Organization (WMO). The increasing frequency and intensity of dust storms in arid and semi-arid regions, particularly in Iran, necessitates accurate forecasting tools to mitigate their adverse environmental, economic, and health impacts. Traditional methods often fail to capture the complex nonlinear relationships between climatic variables and dust storm occurrences. By integrating advanced machine learning techniques, the GRNN-SVM-LSTM model addresses this limitation, offering a robust framework for improved planning, resource management, and policy development to reduce the negative impacts of these natural hazards. This study enhances the understanding of dust storm dynamics and provides actionable insights for policymakers and environmental managers to formulate effective mitigation strategies. The primary objective is to develop and assess the hybrid GRNN-SVM-LSTM model for predicting FDSD in Sistan and Baluchestan Province. Furthermore, the study compares the hybrid model's performance with individual GRNN and SVM models to improve forecasting accuracy and reliability based on climatic and meteorological variables.

Method

The study investigates the GRNN-SVM-LSTM hybrid model and compares its performance with individual GRNN and SVM models for predicting the FDSD index across five meteorological stations: Zabol, Zahedan, Khash, Iranshahr, and Saravan. The analysis utilizes a 40-year dataset (1980–2020) that includes hourly horizontal visibility data and WMO weather codes. Meteorological observations were recorded every three hours, resulting in eight synoptic reports per day. Three distinct models were employed to predict FDSD: two standalone models, GRNN and SVM, and a hybrid GRNN-SVM-LSTM model. The models' performances were assessed using goodness-of-fit metrics, with the prediction horizon varying from one to four past seasons. Initially, the performance of the individual GRNN and SVM models was analyzed. The next step involved evaluating recurrent neural networks (RNNs) for processing time series and sequential data. Long Short-Term Memory (LSTM) networks, a specialized RNN architecture designed to learn and retain patterns in long-term time series data, were then integrated into the hybrid model. The LSTM architecture includes memory units capable of preserving information over time, making it particularly effective for complex sequential data. Given the multifaceted nature of dust storms, adopting a hybrid model is essential for accurately capturing both linear and nonlinear variables influencing these phenomena. Therefore, this study employs the GRNN-SVM-LSTM hybrid model to provide a novel and comprehensive forecasting approach.

Results

The General Regression Neural Network (GRNN) model, implemented in R, demonstrated the best performance when using FDSD data from two previous seasons. The Root Mean Squared Error (RMSE) improved significantly across all five stations when compared to using data from four prior seasons. Similarly, the Support Vector Machine (SVM) model, also implemented in R, achieved optimal performance with FDSD data from one or two previous seasons. The GRNN-SVM-LSTM hybrid model outperformed both standalone models in predicting the FDSD index across all five stations. The hybrid model exhibited substantial improvements in the correlation coefficient and Nash-Sutcliffe efficiency, highlighting its superior forecasting capabilities. In conclusion, the hybrid GRNN-SVM-LSTM model delivered the most accurate predictions for FDSD in the Sistan and Baluchestan region, surpassing the standalone GRNN and SVM models. This superior performance underscores the potential of integrating advanced machine learning techniques for effective dust storm forecasting.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

 

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank the reviewers and editor for their critical comments that helped to improve the paper. The authors gratefully acknowledge the support and facilities provided by the Department of Reclamation of arid and mountainous regions, Faculty of Natural Resources, University of Tehran, Iran.

Ethical considerations

The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

The author declares no conflict of interest.

Aili, A., Xu, H., Xu, Q., & Liu, K. (2023). Aeolian dust movement and deposition under local atmospheric circulation in a desert-oasis transition zone of the northeastern Taklimakan desert. Ecological Indicators, 157, 111289. https://doi.org/10.1016/j.ecolind.2023.111289.
Ansari Ghojghar, M., Araqi Nejad, S., & Bazrafshan, J. (2021). Evaluating the efficiency of the GRU-LSTM hybrid model in predicting dust storms (Case study: Khuzestan Province). Iranian Journal of Soil and Water Research, 53(8), 1695–1714. (In Persian).
Ansari Ghojghar, M., Bazrafshan, J., & Araqi Nejad, S. (2022). Evaluating the efficiency of hybrid meta-models combining machine learning and Box-Jenkins for dust storm modeling (Case study: Khuzestan Province). Iranian Journal of Water and Soil Research, 53(8), 1695–1714. (In Persian).
Ansari Ghojghar, M., Bazrafshan, J., Araqi Nejad, S., Parsi, E., & Soltani, S. (2020). Performance analysis of the hybrid Support Vector Machine-Wavelet model in predicting dust storms (Case study: Sistan and Baluchestan Province). Environmental Hazards Management, 7(4), 331–351. (In Persian).
Ansari Ghojghar, M., Pourgholam Amiji, M., Araqi Nejad, S., Babaeian, I., & Salajegheh, A. (2021). The impact of the warm phase of ENSO on the formation of dust storms in Khuzestan and Sistan and Baluchestan provinces. Rangeland and Watershed Management Scientific-Research Journal, 74(2), 257–271. (In Persian).
Ansari Ghojghar, M., Pourgholam Amiji, M., Bazrafshan, J., Araqi Nejad, S., Liaqat, A., & Hoseini Moghari, S. M. (2020). Evaluating the efficiency of Genetic Algorithm and the GA-SA hybrid method in predicting dust storms (Case study: Khuzestan Province). Iranian Journal of Water and Soil Research, 51(10), 2623–2639. (In Persian).
Ansari Ghojghar, M., Pourgholam Amiji, M., Bazrafshan, J., Liaqat, A., & Araqi Nejad, S. (2020). Comparing the efficiency of statistical, fuzzy, and perceptron neural networks in predicting dust storms in critical regions of Iran. Iranian Journal of Water and Soil Research, 51(8), 2051–2063. (In Persian).
Dalal, S., Lilhore, U. K., Faujdar, N., Samiya, S., Jaglan, V., Alroobaea, R., ... & Ahmad, F. (2024). Optimising air quality prediction in smart cities with hybrid particle swarm optimization-long-short term memory-recurrent neural network model. IET Smart Cities. https://doi.org/10.1049/smc2.12040.
Heddam, S. (2017). Generalized regression neural network based approach as a new tool for predicting total dissolved gas (TDG) downstream of spillways of dams: A case study of Columbia River Basin dams, USA. Environmental Processes, 4(1), 235–253. https://doi.org/10.1007/s40710-017-0207-9.
Khosh Kish, A., Alijani, B., & Hejazi Zadeh, Z. (2011). Synoptic analysis of dust systems in Lorestan province. Journal of Applied Research in Geographic Sciences, 11(21), 91–110. (In Persian).
Li, N., & Zhang, W. (2022). Research on sand-dust storm forecasting based on deep neural network with stacking ensemble learning. IEEE Access, 10, 111855–111863. https://doi.org/10.1109/ACCESS.2022.3193653
Lu, Z. Y., Zhang, Q. M., & Zhao, Z. C. (2006, August). SVM in the sand-dust storm forecasting. In 2006 International Conference on Machine Learning and Cybernetics (pp. 3677–3681). IEEE. https://doi.org/10.1109/ICMLC.2006.258206.
Pourgholam Amiji, M., Ansari Ghojghar, M., & Ahmadali, K. (2021). Predicting dust storms in Khuzestan Province using artificial neural networks. Nivar, 45(114–115), 52–69. (In Persian).
Pourgholam Amiji, M., Ansari Ghojghar, M., Bazrafshan, J., Liaqat, A., & Araqi Nejad, S. (2020). Comparison of SARIMA and Holt-Winters time series models with artificial intelligence methods in predicting dust storms (Case study: Sistan and Baluchestan Province). Geographical Natural Research, 52(4), 567–587. (In Persian).
Shi, L., Zhang, J., Zhang, D., Igbawua, T., & Liu, Y. (2020). Developing a dust storm detection method combining Support Vector Machine and satellite data in typical dust regions of Asia. Advances in Space Research, 65(4), 1263–1278. https://doi.org/10.1016/j.asr.2019.11.015
Nabavi, S. S., Moradi, H., & Shrifikia, M. (2019). Evaluation of dust storm temporal distribution and the relation of the effective factors with the frequency of occurrence in Khuzestan Province from 2000 to 2015. Scientific-Research Quarterly of Geographical Data (SEPEHR, 28(111), 191–203. https://doi.org/10.22131/sepehr.2019.37518. (In Persian).
Zhen, Z., Li, Z., Wang, F., Xu, F., Li, G., Zhao, H., ... & Li, J. (2024). CNN-LSTM networks-based sand and dust storms monitoring model using FY-4A satellite data. IEEE Transactions on Industry Applications. https://doi.org/10.1109/TIA.2024.3124567.