Al-Wabel, M.I., Al-Omran, A., El-Naggar, A.H., Nadeem, M. & Usman, A.R. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131, 374-379. https://doi.org/10.1016/j.biortech.2012.12.165.
Anegbe, B., Okuo, J.M., Ewekay, E.O., & Ogbeifun, D.E. (2015). Fractionation of lead-acid battery soil amended with Biochar. Bayero Journal of Pure and Applied Sciences, 7(2), 36. https://doi.org/7. 36. 10.4314/bajopas.v7i2.8.
Chapman, H.D. (1965). Cation Exchange Capacity. In: Black, C.A., Ed., Methods of Soil Analysis. American Society of Agronomy, Madison, 891-901.
Chhabra, R. (2004). Classification of salt-affected soils. Arid Land Research and Management, 19, 61-79. https://doi.org/10.1080/15324980590887344.
Chia, CH., Singh, BP., Joseph, S., Graber, ER., & Munroe, P. (2014). Characterization of an enriched biochar.
Journal of Analytical and Applied Pyrolysis, 108, 26-34.
https://doi.org/10.1016/j.jaap.2014.05.021.
Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S., & Gulbrandson, D.W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis.
Microporous and Mesoporous Materials, 179, 250-257. https://doi.org/
10.1016/j.micromeso.2013.05.023.
Clark, J.S. (1964). An examination of the pH of calcareous soils. Soil Science, 98(3), 145-151. https://doi.org/10.1097/00010694-196409000-00001.
Cresser, M., Killham, K., & Edwards, Tony. (1993). Soil Chemistry and Its Applications. Cambridge University Press. 10.1017/CBO9780511622939.
Demir Kaya, M., Okçu, G., Atak, M., Yakup Çıkılı, Y., & Özer Kolsarıcı, O. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.).
European Journal of Agronomy, 24 (4), 291-295.
https://doi.org/10.1016/j.eja.2005.08.001.
Duan, S., & Kaushal, S.S. (2015). Salinization alters fluxes of bioreactive elements from stream ecosystems across land use. Biogeosciences, 12, 7331-7347. https://doi.org/10.5194/bg-12-7331-2015.
Elzobair, KA., Stromberger, ME., Ippolito, JA., & Lentz, RD. (2016) Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol.
Chemosphere, 142, 145-52.
https://doi.org/10.1016/j.chemosphere.
Gee, G.W., & Bauder, J.W. (1986). Particle-Size Analysis. In: Klute, A., Ed., Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph. No. 9, 2nd Edition, American Society of Agronomy/Soil Science Society of America, Madison, WI, 383-411.
Haefele, S. M., Konboon, Y., Wongboon, W., Amarante, S., Maarifat, A. A., Pfeiffer, E. M., & Knoblauch, C.J.F.C.R. (2011). Effects and fate of biochar from rice residues in rice-based systems.
Field Crops Research, 121(3), 430-440.
https://doi.org/10.1016/j.fcr.2011.01.014.
Hamam, Kh., & Negim, O. (2014). Evaluation of wheat genotypes and some soil properties under saline water irrigation. Annals of Agricultural Sciences. https://doi.org/59.10.1016/j.aoas.2014.11.002.
Hammer, EC., Forstreuter, M., Rillig, MC., & Kohler, J. (2015). Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress.
Applied Soil Ecology, 96, 114-121.
https://doi.org/10.1016/j.apsoil.2015.07.014.
Hashim, B.A., & Mohammed, H.A. (2023). Effect of adding potassium and selenium on the concentration of nutrients in climbing bean plant (Phaseolus vulgaris) affected by humidity stress. In IOP Conference Series: Earth and Environmental Science, 1262 (8), 082027. IOP Publishing. https://doi.org/10.1088/1755-1315/1262/8/082027.
Hawrylak-Nowak, B. (2008). Effect of Selenium on selected macronutrients in maize plants. Journal of Elementology, 13, 513-519.
Hejazizadeh, A., Gholamalizadeh Ahangar, A., & Ghorbani, M. (2016). Effect of Biochar on Lead and Cadmium Uptake from Applied Paper Factory Sewage Sludge by Sunflower (Heliantus annus L.). Water and Soil Science, 26 (1-2), 259-271. (In Persian).
Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review.
Plant and Soil, 248, 43-59. https://doi.org/
10.1007/978-94-010-0243-1_4.
International Biochar Initiative. (2015). Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. IBI-STD-2.1. https://biochar-international.org/wp-content/uploads/2020/06/IBI_Biochar_Standards_V2.1_Final2.pdf.
Jackson, M.L. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, 498.
Jalali, M., & Ranjbar, F. (2009). Effects of sodic water on soil sodicity and nutrient leaching in poultry and sheep manure amended soils, Geoderma, 153 (1-2), 194-204. https://doi.org/10.1016/j.geoderma.2009.08.004.
Kaur, S., & Nayyar, H. (2015).Selenium fertilization to salt-stressed mungbean (Vigna radiata L. Wilczek) plants reduces sodium uptake, improves reproductive function, pod set and seed yield. Scientia Horticulturae, 197, 304-317. https://doi.org/10.1016/j.scienta.2015.09.048.
Keling, H., Ling, Z., JiTao, W., & Yang, Y. (2013). Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (
Cucumis melo L.) seedlings under salt stress.
Acta Societatis Botanicorum Poloniae, 82(3), 193-197.
https://doi.org/10.5586/asbp.2013.023.
Khan, K.T., Chowdhury, M.T.A., & Huq, S.I. (2014). Application of biochar and fate of soil nutrients.
Bangladesh Journal of Scientific Research, 27(1), 11-25.
https://doi.org/10.3329/bjsr.v27i1.26221.
Kim, H.S., Kim, K.R., Yang, J.E., Ok, Y.S., Owens, G., Nehls, T., Wessolek, G., & Kim, K.H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153-159. https://doi.org/10.1016/j.chemosphere.2015.06.041.
Lai R., & Stewart BA. (1990). Salt-affected soils. In Soil Degradation. Springer-Verlag: New York; 224-247.
Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., & Yu, X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113-118. https://doi.org/10.1016/j.fcr.2012.11.015.
Lashari, M.S., Bakht-un-Nisa Mangan, I.R., Ji, H., Pan, G., Lashari, A.A., & Nan, J. (2018). Improvement of soil fertility and crop yield through biochar amendment from salt affected soil of central china. Journal of Agricultural Science and Technology, 8, 209. https://doi.org/10.17265/2161-6264/2018.04.002.
Lehmann, L., Matthias, C., Rillig, JT., Caroline, A., Masiello, W.C., & Hockaday, D.C. (2011). Biochar effects on soil biota - A review.
Soil Biology and Biochemistry, 43(9), 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022.
Lentz, R.D., & Ippolito, J.A. (2012). Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.
Journal of Environmental Quality, 41(4), 1033-1043.
https://doi.org/10.2134/jeq2011.0126.
Li, Y., Xing, B., Ding, Y., Han, X., & Wang, Sh. (2020). A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass.
Bioresource Technology, 312, 123614.
https://doi.org/10.1016/j.biortech.2020.123614.
Lin, X.W., Xie, Z.B., Zheng, J.Y., Liu, Q., Bei, Q.C., & Zhu, J.G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil.
European Journal of Soil Science, 66(2), 329-338.
https://doi.org/10.1111/ejss.12225.
Liu, W., Huo, R., Xu, J., Liang, S., Li, J., Zhao, T., & Wang, S. (2017). Effects of biochar on nitrogen transformation and heavy metals in sludge composting.
Bioresource Technology, 235, 43-49.
https://doi.org/10.1016/j.biortech.2017.03.052.
Liu, X.H., & Zhang, X.C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. International Journal of Agriculture & Biology, 14, 745-750.
Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China.
Journal of Soils and Sediments, 17, 780-789. https://doi.org/
10.1007/s11368-016-1361-1.
Ma, N., Zhang, L., Zhang, Y., Yang, L., Yu, C., Yin, G., Doane, T.A., Wu, Z., Zhu, P., & Ma, X. (2016). Biochar improves soil aggregate stability and water availability in a mollisol after three years of field application. PLOS ONE, 11(5), p.e0154091. https://doi.org/10.1371/journal.pone.0154091.
Mahrous, F.N., Mikkelsen, D.S., & Hafez, A.A. (1983). Effect of soil salinity on the electro-chemical and chemical kinetics of some plant nutrients in submerged soils.
Plant and Soil, 75, 455-472.
https://doi.org/10.1007/BF02369980.
Masto, R.E., Ansari, M.A., George, J., Selvi, V.A., & Ram, L.C. (2013). Co-application of biochar and lignite fly ash on soil nutrients and biological parameters at different crop growth stages of Zea mays.
Ecological Engineering, 58, 314-322.
https://doi.org/10.1016/j.ecoleng.2013.07.011.
McGeorge,W.T. (1938). Factor contributing to the reaction of soil sand their pH measurement. Arizona Agricultural Experimental Station Technical Bulletin, 78, 95-126.
Mia, S., Dijkstra, F.A., & Singh, B. (2017). Long-term aging of biochar: a molecular understanding with agricultural and environmental implications. Advances in Agronomy, 141, 1-51. https://doi.org/10.1016/bs.agron.2016.10.001.
Mukherjee, A., & Zimmerman, A.R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193-194, 122-130. https://doi.org/10.1016/j.geoderma.2012.10.002.
Naeem, M.A., Khalid, M., Aon, M., Abbas, G., Amjad, M., Murtaza, B., Khan, W.U.D., & Ahmad, N. (2018). Combined application of biochar with compost and fertilizer improves soil properties and grain yield of maize.
Journal of Plant Nutrition,
41(1), 112-122.
https://doi.org/10.1080/01904167.2017.1381734.
Naidu, R., Syers, J.K., Tillman, R.W., & Kirkman, J.H. (1991). Assessment of plant-available phosphate in limed, acid soils using several soil-testing procedures.
Fertilizer Research, 30, 47-53.
https://doi.org/10.1007/BF01048826.
Nawaz, F., Ahmad, R., Ashraf, MY., Waraich, EA., & Khan SZ. (2015). Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology Environmental Safety, 113, 191-200. doi: 10.1016/j.ecoenv.2014.12.003.
Nelson, R.E., (1982). Carbonate and Gypsum. Agronomy Journal, 9, 181-197.
O’toole, A., Moni, C., Weldon, S., Schols, A., Carnol, M., Bosman, B., & Rasse, D.P. (2018). Miscanthus biochar had limited effects on soil physical properties, microbial biomass, and grain yield in a four-year field experiment in Norway. Agriculture, 8(11), 171. https://doi.org/10.3390/agriculture8110171.
Obia, A., Mulder, J., Martinsen, V., Cornelissen, G., & Børresen, T. (2016). In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils.
Soil and Tillage Research, 155, 35-44.
https://doi.org/10.1016/j.still.2015.08.002.
Olsen, S.R., Cole, C.V., & Watanabe, F.S. (1954). Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular No. 939, US Government Printing Office, Washington DC.
Rafique, M., Ortas, I., Rizwan, M., Chaudhary, H.J., Gurmani, A.R., & Munis, M.F.H. (2020). Residual effects of biochar and phosphorus on growth and nutrient accumulation by maize (
Zea mays L.) amended with microbes in texturally different soils.
Chemosphere, 238, 124710.
https://doi.org/10.1016/j.chemosphere.2019.124710.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil.
Biology and Fertility of Soils, 48, 271-284.
https://doi.org/10.1007/s00374-011-0624-7.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., & Lehmann, J. (2011). Corn Growth and Nitrogen Nutrition after Additions of Biochars with Varying Properties to a Temperate Soil.
Biology and Fertility of Soils, 48, 271-284.
http://dx.doi.org/10.1007/s00374-011-0624-7.
Sajedi, N.A., Ardakani, M.R., Naderi, A., Madani, H., & Mashhadi Akbar Boojar, M. (2008). Effect of nutrition elements application on agronomical characters of hybrid maize (ksc.704) under water deficit stress at different growth stages. Iranian Journal of Agronomy and Plant Breeding, 4(1), 89-102. SID. https://sid.ir/paper/190385/en.
Shahriyari, E. (2013). Investigating the spatial changes of some soil characteristics in the lands of Atabieh (Khuzestan province) using geostatistics, interpolation and GIS methods. Master’s Thesis, Shahid Chamran University of Ahvaz, Ahvaz. (In Persian).
Singh, M., & Malhotra, P.K. (1976). Selenium availability in berseem (
Trifolium alexandrinum) as affected by selenium and phosphorus application.
Plant and Soil, 44, 261-266.
https://doi.org/10.1007/BF00016977.
Singla, A., Dubey, S.K., Singh, A., & Inubushi, K. (2014). Effect of biogas digested slurry-based biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agriculture, Ecosystems & Environment, 197, 278-287. https://doi.org/10.1016/j.agee.2014.08.010.
Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145. https://doi.org/10.1016/j.jaap.2011.11.018.
Taghavimehr, J. (2015). Effect of biochar on soil microbial communities, nutrient availability, and greenhouse gases in short rotation coppice systems of central Alberta. Master’s Thesis, University of Alberta, Edmonton. https://doi.org/10.7939/R32Z1311P.
Tenic, E., Rishikesh G., & Amit, D. (2020) Biochar-A Panacea for Agriculture or Just Carbon? Horticulturae, 6(3), 37. https://doi.org/10.3390/horticulturae6030037.
Thies, J.E., & Rillig, M.C. (2012). Characteristics of biochar: biological properties. Biochar for Environmental Management, 117-138. Routledge.
Ullah, S., Dahlawi, S., Naeem, A., Rangel, Z. & Naidu, R. (2018). Biochar application for the remediation of salt-affected soils: challenges and opportunities.
Science of the Total Environment. 625.
https://doi.org/10.1016/j.scitotenv.2017.12.257.
US Salinity Laboratory Staff. (1954). Diagnosis and improvement of saline and alkali soils. US Department of Agriculture Handbook 60, Washington, DC.
van Dijk, G., Lamers, L. P., Loeb, R., Westendorp, P. J., Kuiperij, R., van Kleef, H. H., ... & Smolders, A. J. (2019). Salinization lowers nutrient availability in formerly brackish freshwater wetlands; unexpected results from a long-term field experiment.
Biogeochemistry, 143, 67-83.
https://doi.org/10.1007/s10533-019-00549-6.
Verheijen, F., Jeffery, S., Bastos, A.C., Van Der Velde, M., & Diafas, I. (2010). Biochar application to soils: a critical scientific review of effects on soil properties processes and functions. Processes and Functions. EUR 24099 EN. Luxembourg (Luxembourg): European Commission. JRC55799.
Wakeel, A. (2013). Potassium–sodium interactions in soil and plant under saline‐sodic conditions.
Journal of Plant Nutrition and Soil Science, 176(3), 344-354.
https://doi.org/10.1002/jpln.201200417.
Walkley, A.J., & Black, I.A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37, 29-38.
Xu, G., Zhang, Y., Sun, J., & Shao, H. (2016). Negative interactive effects between biochar and phosphorus fertilization on phosphorus availability and plant yield in saline sodic soil.
Science of the Total Environment, 568, 910-915.
https://doi.org/10.1016/j.scitotenv.2016.06.079.
Xue, T., Hartikainen, H. & Piironen, V. (2001). Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil, 237, 55–61. https://doi.org/10.1023/A:1013369804867.
Yanardag, İ. H., Yanardağ, A. B., Mermut, A. R., & Cano, A. F. (2022). Carbon storage potential and its distributions in the particle size fractions in harran plain, Turkey.
Journal of Agricultural Sciences,
28(3), 501-510.
https://doi.org/10.15832/ankutbd.907173.
Yuan, J.H., & Xu, R.K. (2010). Effects of rice-hull-based biochar regulating acidity of red soil and yellow brown soil.
Journal of Ecology and Rural Environment, 26(5), 472-476.
https://doi.org/10.5555/20103316564.
Zhang, H., Liao, W., Zhou, X., Shao, J., Chen, Y., Zhang, S., & Chen, H. (2022). Co-effect of pyrolysis temperature and potassium phosphate impregnation on characteristics, stability, and adsorption mechanism of phosphorus-enriched biochar.
Bioresource Technology, 344 (B), 126273.
https://doi.org/10.1016/j.biortech.2021.126273.
Zhao, R., Coles, N., Kong, Zh., & Wu, J. (2015). Effects of aged and fresh biochars on soil acidity under different incubation conditions. Soil and Tillage Research, 146 (B), 133-138. https://doi.org/10.1016/j.still.2014.10.014.