Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F. & izadbakhsh, MA. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Science Informatic. https://doi.org/10.1007/s12145-023-01052-1
Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A. & Shabanlou, S. (2023). Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage. 72(3), 747–762.
Azizi, K., Azari, A. & Farhadi Bansouleh, B. (2023). Simulation and determination of hydrodynamic coefficients and aquifer balance with Modflow mathematical model (Case study: Kermanshah Plain). Advanced Technologies in Water Efficiency. 2(4), 68-87.
Azizpour, A., Izadbakhsh, M.A., Shabanlou, S., Yosefvand, F. & Rajabi, A. (2021). Estimation of water level fluctuations in groundwater through a hybrid learning machine, Groundwater for Sustainable Development, 15, 100687.
Azizpour, A., Izadbakhsh, MA., Shabanlou, S., Yosefvand, F. & Rajabi, A. (2022). Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model. Environment Science Pollution Research, 29, 28414–28430.
Bauer, P., Gumbricht, Th. & Kinzelbach, W. (2006). A regional coupled surface water/ groundwater model of the Okavango Delta, Botswana. Water Resources Research, 42, 1-15.
Chang, L.C., Ho, C.C., Yeh, M.S. & Yang, C.C. (2010). An Integrating approach for conjunctive-use planning of surface and subsurface water system. Water Resource Management, 25, 59–78.
Costa, D., Zhang, H. & Levison, J. (2021). Impacts of climate change on groundwater in the Great Lakes Basin: A review. Great Lakes Research, 47(6), 1613-1625.
Enayatifar, R., Yousefi, M., Abdullah, A.H. & Darus, A.N. (2013). MOICA: A novel multi-objective approach based on imperialist competitive algorithm. Applied Mathematics and Computation. 219(17), 8829–8841.
Epting, J., Michel, A., Affolter, A. & Huggenberger, P. (2021). Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. Hydrology X, 11(3), 100071.
Erturk, A., Ekdal, A., Gurel, M., Karakaya, N., Guzel, C. & Gonenc, E. (2014). Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the total environment, 499, 437-447.
Fallahi, MM., Shabanlou, S., Rajabi, A., Yosefvand, F. & izadbakhsh, MA. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Applied Water Science. 13, 143.
Gilbert, J.M. & Maxwel, R.M. (2017). Examining regional groundwater–surface water dynamics using an integrated hydrologic model of the San Joaquin River basin. Hydrology and Earth System Sciences, 21, 923–947.
Gulacha, M.M. & Mulungu, D.M.M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Physics and Chemistry of the Earth, 100, 62-72.
Guzman, S.M., Paz, JO., Tagert, M.L.M. & Mercer, A.E. (2019). Evaluation of Seasonally Classified Inputs for the Prediction of Daily Groundwater Levels: NARX Networks Vs Support Vector Machines. Environmental Modeling & Assessment, 24(2), 223-234.
Hadded, R., Nouiri, I., Alshihabi, Q., Mabmann, J., Huber, M., Laghouane, A., Yahiaoui, H. & Tarhouni, J. (2013). A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework. Water Resource Management, Springer Science. 20 P.
Hu, L., Xu, Z. & Huang, W. (2016). Development of a river-groundwater interaction model and its application to a catchment in Northwestern China. Hydrology. 543, 483-500.
Kamkar, V., Azari, A. & Fatemi, S.E. (2021). Estimation of Recharge and Flow Exchange between River and Aquifer Based on Coupled Surface Water-Groundwater Model. Iranian Journal of Soil and Water Research. 52(7), 1779-1793.
Karamouz, M., Kerachian, R. & Zahraie, B. (2004). Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. Irrigation and Drainage Engineering, 130, 391-402.
Li, Z., Quan, J., Li, X-Y., Wu, X-C., Wu, H-W., Li, Y-T & Li, G-Y. (2016). Establishing a model of conjunctive regulation of surface water andgroundwater in the arid regions. Agricultural Water Management. 174, 30- 38.
Malekzadeh, M., Kardar, S., Saeb, K., Shabanlou, S. & Taghavi, L. (2019a). A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model. Water resources management. 33, 1609-1628.
Malekzadeh, M., Kardar, S. & Shabanlou, S. (2019b). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development. 9, 100279.
Mazandarani Zadeh, H. & Hoseini, M. (2023). Investigating the effect of agricultural product price forecasting on groundwater level using systems dynamics, in order to simultaneously maintain the welfare of farmers and groundwater resources. Iranian Journal of Soil and Water Research, 53(11), 2565-2582.
Mazraeh, A., Bagherifar, M., Shabanlou, S. & Ekhlasmand, R. (2023). A Hybrid Machine Learning Model for Modeling Nitrate Concentration in Water Sources. Water, Air, & Soil Pollution. 234(11), 1-22.
Mazraeh, A., Bagherifar, M., Shabanlou, S. & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A ombination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm, Groundwater for Sustainable Development, 24, 101062.
Mohammed, KS., Shabanlou, S., Rajabi, A., Yosefvand, F. & izadbakhsh, MA. (2023). Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS. Applied Water Science. 13, 54.
Moradi, A., Akhtari, A. & Azari, A. (2023). Prediction of groundwater level fluctuation using methods based on machine learning and numerical model. Applied Research in Water and Wastewater, 10(1), 20-28.
Morway, E. D., Niswonger, R. G. & Triana, E. (2016). Toward improved simulation of river operations through integration with a hydrologic model. Environmental Modelling & Software, 82, 255-274.
Nadiri, A. A., Naderi, K., Khatibi, R., & Gharekhani, M. (2019). Modelling groundwater level variations by learning from multiple models using fuzzy logic. Hydrological sciences journal, 64(2), 210-226.
Nyembo, L. O., Larbi, I., Mwabumba, M., Selemani, J. R., Dotse, S. Q., Limantol, A. M. & Bessah, E. (2022). Impact of climate change on groundwater recharge in the lake Manyara catchment, Tanzania. Scientific African, 15(10), e01072.
Poursaeid, M., Mastouri, R., Shabanlou, S. & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, Salinity and groundwater levels using novel learning machines. Environment Earth Science. 79, 1–25.
Poursaeid, M., Mastouri, R., Shabanlou, S. & Najarchi, M. (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal. 35, 67–83.
Rajabi, A. & Shabanlou, S. (2012). Climate index changes in future by using SDSM in Kermanshah, Iran. Environmental Research and Development, 7(1), 37–44.
Rajabi, A. & Shabanlou, S. (2013). The Analysis of Uncertainty of Climate Change by Means of SDSM Model Case Study: Kermanshah. World Applied Sciences Journal, 23(10), 1392-1398.
Rheinheimer, D. E., Null, S. E. & Lund, J. R. (2014). Optimizing Selective Withdrawal from Reservoirs to Manage Downstream Temperatures with Climate Warming. Water Resources Planning and Management, 141(4), 04014063.
Sarwar, A. & Eggers, H. (2006). Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeology Journal. 14, 1676–1687.
Shrestha, S., Bach, T. V., & Pandey, V. P. (2016). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science and Policy, 61, 1–13.
Singh, A. (2014). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23–29.
Soltani., K. & Azari, A. (2022). Forecasting groundwater anomaly in the future using satellite information and machine learning. Hydrology, 612(2), 128052.
Soltani., K. & Azari, A. (2023). Terrestrial water storage anomaly estimating using machine learning techniques and satellite-based data (a case study of Lake Urmia Basin). Irrigation and Drainage, 72 (4).
Tennant, D.L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10.
Triana, E., Labadie, J. W., Gates, T. K. & Anderson, C. W. (2010). Neural network approach to stream-aquifer modeling for improved river basin management. Hydrology. 391, 235-247.
Yan, D., Werners, S., Ludwig, F. & Qing Huang, H. (2015). Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Hydrology 4, 228-245.
Yosefvand, F. & Shabanlou, S. (2020). Forecasting of Groundwater Level Using Ensemble Hybrid Wavelet–Self-adaptive Extreme Learning Machine-Based Models. Natural Resource Research. 29, 3215–3232.
Zibaei, M. H., Zibaei, M. & Ardokhani, K. (2013). Evaluation of scenarios of integrated use of surface and groundwater resources in Firoozabad plain of Fars. Agricultural Economics Research, 5(1), 157-181.
Zeinali, M., Azari, A. & Heidari, M. M. (2020a). Simulating Unsaturated Zone of Soil for Estimating the Recharge Rate and Flow Exchange Between a River and an Aquifer. Water Resources Management, 34, 425–443.
Zeinali, M., Azari, A. & Heidari, M. M. (2020b). Multiobjective Optimization for Water Resource Management in Low-Flow Areas Based on a Coupled Surface Water–Groundwater Model. Water Resource Planning and Management (ASCE), 146(5), 04020020.