Introducing a Nonlinear Model Based on Hybrid Machine Learning for Modeling and Prediction of Precipitation and Comparison with SDSM Method (Cases Studies: Shahrekord, Barez, and Yasuj)

Document Type : Research Paper


1 Graduated MSc., Department of Water Resources Engineering and Management, Faculty of Civil Engineering, Semnan University, Semnan, Iran.

2 Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University

3 Assistant Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan Univercity, Semnan, Iran.


In the present study, a nonlinear hybrid model, based on multivariate adaptive regression splines (MARS), artificial neural networks (ANN) and K-nearest neighbor (KNN) has been presented for downscaling the precipitation of Shahrekord, Barez, and Yasuj under climate change conditions. This model, similar to SDSM, is composed of two steps; classification and regression. The MARS model is employed for classification of precipitation occurrence and the ANN and KNN are employed for determination of the amount of precipitation. The results of MARS showed that the mentioned model is more accurate than the SDSM model. Comparing the results of downscaled precipitation showed that the ANN model is more accurate than the SDSM and KNN in prediction of average annual and monthly precipitation. So that the R value for ANN was 54% more than the one in SDSM model, in Shahrekord. Also, according to the highest accuracy, standard deviation and skewness coefficient, the ANN, KNN and SDSM model ranked first, second, and third, respectively, for prediction of monthly average precipitation in three investigated stations. Eventually, the precipitation changes in the near future (2020-2040) and far future (2070-2100) periods were investigated under the A2 and B2 scenarios of the HADCM3 model. Results revealed that the lowest precipitation reduction is corresponded to ANN (in Shahrekord) and A2 scenario in the near future period and the highest precipitation reduction is corresponded to SDSM (in Yasuj) and A2 scenario in the far future period. Finally, it can be concluded that the proposed model is more accurate than the SDSM model and can be used as an alternative to the SDSM model.


Main Subjects

Ahmadi, A., Moridi, A., Lafdani, E. K. and Kianpisheh, G. (2014). Assessment of climate change impacts on rainfall using large scale climate variables and downscaling models–A case study. Journal of Earth System Science, 123(7), 1603-1618.
Ahmed, K., Shahid, S., Nawaz, N. and Khan, N. (2019). Modeling climate change impacts on precipitation in arid regions of Pakistan: a non-local model output statistics downscaling approach. Theoretical and Applied Climatology, 137(1-2), 1347-1364.
Al-Mukhtar, M. and Qasim, M. (2019). Future predictions of precipitation and temperature in Iraq using the statistical downscaling model. Arabian Journal of Geosciences,
Araghinejad, S. (2014). Data-driven modeling: Using MATLAB in Water Resources and Environmental Engineering. Springer, Water Science and Technology Library, 67.
Ashofteh, S. A. and Bozorg-Haddad, O. (2013). Use of multi-conditional functions in the field of reservoir management and under climate change. Iranian Journal of Soil and Water Research, 45(4), 397-404. (In Farsi).
Beheshti, M., Heidari, A. and Saghafian. (2019). Susceptibility of Hydropower Generation to Climate Change: Karun III Dam Case Study. Water, 11(5), 1025.
Campozano, L., Tenelanda, D., Sanchez, E., Samaniego, E. and Feyen, J. (2016). Comparison of statistical downscaling methods for monthly total precipitation: Case study for the Paute River Basin in Southern Ecuador. Advances in Meteorology, 2016, ID: 6526341.
Chaudhary, S., Agarwal, A. and Nakamura, T. (2019). Rainfall Projection in Yamuna River Basin, India, Using Statistical Downscaling. In: Rathinasamy M., Chandramouli S., Phanindra K., Mahesh U. (eds) Water Resources and Environmental Engineering II. Springer, Singapore.
Chen, S. T., Yu, P. S. and Tang, Y. H. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13-22.
Devak, M., Dhanya, C. T. and Gosain, A. K. (2015). Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. Journal of Hydrology, 525, 286-301.
Dorji, S., Herath, S. and Mishra, B. (2017). Future climate of colombo downscaled with SDSM-neural network. Climate, 5(1), 24.
Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, 19(1), 1-67.
Ghamghami, M., Ghahreman, N. and Araghinejad, S. (2010). An evaluation of the performance of an advanced approach of the K-nearest neighbor in simulating the daily meteorological data. Iranian Journal of Soil and Water Research, 42(1), 45-54. (In Farsi).
Hadi, S. J. and Tombul, M. (2018). Streamflow forecasting using four wavelet transformation combinations approaches with data-driven models: A comparative study. Water Resources Management, 32(14), 4661-4679.
Haji Hosseini, R., Golian, S. and Yazdi, J. (2018). Evaluation of data-driven models to downscale rainfall parameters from global climate models outputs: The case study of Latyan watershed. Journal of Water and Climate Change,
Harpham, C. and Wilby, R. L. (2005). Multi-site downscaling of heavy daily precipitation occurrence and amounts. Journal of Hydrology, 312(1-4), 235-255.
Hessami, M., Gachon, P., Ouarda, T. B. M. J. and St-Hilaire, A. (2008). Automated regression-based statistical downscaling tool. Environmental Modelling & Software,23(6), 813–834.
IPCC-TGCIA. (1999). Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment, Version 1. Intergovernmental Panel on Climate Change, 69 p.
IPCC-TGCIA. (2007). General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment. Version 1, 312, Intergovernmental Panel on Climate Change, 66 p.
Khashei, A., Shahidi, A., Pourrezabilondi, M., Amirabadizadeh, A. and Jafarzadeh, A. (2018). Performance assessment of ANN and SVR for downscaling of daily rainfall in dry regions. Iranian Journal of Soil and Water Research, 49(4), 781-793. (In Farsi).
Lee, K. T., Hung, W. C. and Meng, C. C. (2008). Deterministic insight into ANN model performance for storm runoff simulation. Water Resources Management, 22(1), 67-82.
Mekanik, F., Imteaz, M. A., Gato-Trinidad, S. and Elmahdi, A. (2013). Multiple regression and artificial neural network for long-term rainfall forecasting using large scale climate modes. Journal of Hydrology, 503, 11-21.
Mesbahzadeh, T., Miglietta, M. M., Miakbari, M., Soleimani Sardoo, F. and Abdolhoseini, M. (2019). Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran). Advances in Meteorology,
Modaresi, F. Araghinejad, S. and Ebrahimi, K. (2018). A comparative assessment of artificial neural network, generalized regression neural network, least-square support vector regression, and K-nearest neighbor regression for monthly streamflow forecasting in linear and nonlinear conditions. Water Resources Management, 32(1), 243-258.
Moghadam, S. H., Ashofteh, P. S. and Loáiciga. H. A. (2019). Application of Climate Projections and Monte Carlo Approach for Assessment of Future River Flow: Khorramabad River Basin, Iran. Journal of Hydrologic Engineering,
Morita, T., (2001). 2.5. 1.1 IPCC Emissions Scenarios and the SRES Process. IPCC TAR WG3.
Nourani, V., Baghanam, A. H. and Gokcekus, H. (2018). Data-driven ensemble model to statistically downscale rainfall using nonlinear predictor screening approach. Journal of Hydrology, 565, 538-551.
Nourani, V., Razzaghzadeh, Z., Baghanam, A.H. and Molajou, A. (2019). Theoretical and Applied Climatology, 137(3-4): 1729-1746.
Rezaie-Balf, M., Zahmatkesh, Z and. Kim, S. (2017). Soft computing techniques for rainfall-runoff simulation: Local non–parametric paradigm vs. model classification methods. Water Resources Management, 31(12), 3843-3865.
Salajegheh, A., Rafiei Sardoii, E., Moghaddamnia, A., Malekian, A., Araghinejad, S., Khalighi Sigarodi, S. and Pourjam, A. S. (2018). Performance assessment of LARS-WG and SDSM downscaling models in simulation of precipitation and temperature. Iranian Journal of Soil and Water Research, 48(2), 253-262. (In Farsi).
Sayedi, A., Taleb beydokhti, N., Najarchi, M. and Najafizadeh, M. M. (2019). Investigation into the Effects of Climatic Change on Temperature, Rainfall, and Runoff of the Doroudzan Catchment, Iran, Using the Ensemble Approach of CMIP3 Climate Models. Advances in Meteorology,
Singh, K. K., Pal, M. and Singh, V. P. (2010). Estimation of mean annual flood in Indian catchments using back propagation neural network and M5 model tree. Water Resources Management, 24(10), 2007-2019.
Wilby, R. L., Dawson, C. W. and Barrow, E. M. (2002). SDSM- A decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 145-157.
Wu, C. L., Chau, K. W. and Fan, C. (2010). Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. Journal of Hydrology, 389(1-2), 146-167.