Effect of Nano‌Clay on piping Erosion in Earth Dams

Document Type : Research Paper

Authors

Abstract

Scouring and internal erosion always have created problems for earth dams. So that internal erosion or piping is known as the second causing the earth dam failure. In this study, nanoclay is used as a new additive without environmental problems, to reduce the piping erosion of silty sand soil. To investigate erodibility samples containing nanoclay with 0, 1, 2, 3, 4, 5and 6 weight percent of dry soil were used and run the Hole Erosion Test (HET). Then the impact of compaction, moisture content and hydraulic gradient on erosion of samples with 1% nanoclay were investigated. The results show that by adding 1% nanoclay erosion rate index increased more than two times, that means the erodibility reduces. Erodibility of sample containing 1% nanoclay at the most hydraulic gradient was changed from very fast group to moderately slow group.

Keywords

Main Subjects


Bahari, M., Shahnazari, A. (2015). Experimental study of the fine- grained earthen bed stabilization using nanoclay. Journal of Water and Soil Science, 19(72), 107-114. (In Farsi)
Bendahmane, F., Marot, D., and Alexis, A. (2008). Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1), 57-67.
Farrar, J.A., Torres, R.L. and Erdogan, Z. (2007). Bureau of reclamation erosion testing for evaluation of piping and internal erosion of dams. Geotechnics of Soil Erosion Journal, Geo-Denver, New Peaks in Geotechnics, pp. 1-10.
Fell, R., Macgregor, P., Stapledon, D., Bell, G. (2005). Geotechnical engineering of dams, Publishd By: A.A. Balkema Publishers Leiden, The Netherland, A Member of Taylor & Francis Group Plc.912.
Foster, M. A., Fell, R., and Spannagle, M. (2003). A method for estimating the relative likelihood of failure of embankment dams by internal erosion and piping . Canadian Geotechnical Journal, 37(5), 1025–1061.
Gutierrez, M.S. (2005). Potential Applications of Nano-mechanics in Geotechnical Engineerin. In: Proceedings of the International Workshop on Micro-Geomechanics across Multiple Strain Scales, Cambridge, UK, pp.29-30.
Taha, M.R. (2009). Geotechnical properties of soil-ball milled soil mixtures. In: Proceedings of the 3 rd International Symposium on Nanotechnology in Construction, Prague, Czech Republic, pp 377–382.
Wan, C.F., and Fell, R. (2002). Investigation of internal erosion and pipingof soils in embankment dams by the slot erosion test and the hole erosiontest.UNICIV Report No. R-412, The University of New South Wales, Sydney, Australia.
Wan, C.F., and Fell, R. (2004). Investigation of rate of erosion of soils in embankment dams. Journal of Geotechnical and Geoenvironmental Engineering, 130(4), 373-380.
Washington, D., and Rdriguez, D., and Ogunro, V. O. (2005). An effective approach to prevent piping in older dams using cutoff walls contruction design. In:  international conference on energy, enviromental and disasters-inceed.
Wahl, Tony L. (2010). Relating het and jet test results to internal erosion field tests. In: Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling, June 27 - Las Vegas, NV.
Zomorodian, S. M. A., and Koohpeyma, H. R. (2015). Investigation of effect-iveness of modern chemical stabilizers on internal erosion in embankment dams. Sharif Journal Civil Engineering, 30(2), 73-78. (In Farsi)