Quality variations of cow manure biochar generated at different pyrolysis temperatures

Document Type : Research Paper



Biochar has received great attention recently due to its potential to improve soil productivity and
immobilize contaminants and is proper as a way of carbon sequestration in soil. In this study, biochar
produced from cow manure by slow pyrolysis at different temperatures (300, 400, 500, 600, 700 ◦C)
and their physicochemical properties were analysed. Experiments were conducted to examine the effect
of pyrolysis temperature on the cow manure biochar and to identify the optimal pyrolysis temperature
for converting cow manure to biochar with agricultural usage. The results showed that with an
incremental increase in temperature from 300 to700 ◦C, biochar yield, total N content, and organic
carbon (OC) decreased, while pH, EC, ash content, and OC stability increased. The yield and stable OC of biochar was observed between 22.14 to 44.36 % and 35.63 to 72.36 % respectively. To produce cow manure biochar of proper for agricultural applications and a carbon sequestration, temperatures 400 and 500 ◦C are recommended respectively.


Main Subjects

Abe, F., (1988). The  thermochemical study of  forest biomass. Bulletin  of the Forestry  and Forest Products  Research Institute, Japan(352):  1-95.
Cheng,  C.-H.,  Lehmann,  J.,  Thies,  J.E.,  Burton,  S.D.  and  Engelhard,  M.H.,  (2006).  Oxidation  of  black  carbon  by biotic and abiotic processes. Organic Geochemistry,  37(11):  1477-1488.
Claoston,  N. Samsuri,  A.,Husni,  M.A.  and  Amran,  M.M .,(2014).  Effects  of  pyrolysis  temperature  on  the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4):  331-339.
Dai, X. and Antal, M.J., (1999). Synthesis of a  high -yield activated carbon by air gasificat ion of macadamia nut  shell charcoal. Industrial & Engineering  Chemistry Research, 38(9):  3386-3395.
Demirbaş, A., (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion
Dueck, T.A.,  Zuin,  A. and  Elderson,  J., (1998).  Influence  of  ammonia and  ozone  on growth  and  drought  sensit ivity of)  Pinus sylvestris(. Atmospheric Environment,  32(3):  545-550.
Gaskin, J.,  Steiner,  C.,  Harris,  K.,  Das,  K.  and  Bibens,  B., (2008).  Effect  of  low-temperature  pyrolysis  conditions  on biochar for agricultural  use. Trans. Asabe, 51(6):  2061-2069.
Glaser,  B.,  Lehmann,  J.  and  Zech,  W.,  (2002).  Ameliorating  physical  an d  chemical  properties  of  highly  weathered soils in the tropics with charcoal–a review.  Biology and Fertility  of Soils, 35(4):  219-230.
Haluschak, P., (2006).  Laboratory methods of soil analysis. Canada -Manitoba soil survey: 3-133.
Horne, P.A. and Williams, P.T.,(1996). Influence of temperature on the products from the flash pyrolysis of b iomass. Fuel, 75(9):  1051-1059.
Hossain, M.K.,  Strezov,  V.,  Chan,  K.Y.,  Ziolkowski,  A.  and  Nelson,  P.F.,  (2011).  Influence  of  pyrolysis  temperature on  production  and  nutrient  properties  of  wastewater  sludge  biochar.  Journal  of  Environmental Management, 92(1):  223 -228.
Hwang,  I.,  Ouchi,  Y.  and  Matsuto,  T., ( 2007).  Characteristics  of  leachate  from  pyrolysis  residue  of  sewage  sludge. Chemosphere, 68(10):  1913-1919.
James, D.,  Kotuby -Amacher,  J., Anderson,  G.  and Huber,  D., (1996). Phosphorus  mobility  in calcareous  s oils  under heavy manuring. Journal of environmental quality, 25(4):  770-775.
Joseph, S., Downie, A., M unroe, P.,  Crosky, A. and Lehmann, J., (2007). Biochar for carbon sequestration,  reduction of  greenhouse  gas  emissions  and  enhancement  of  soil  fertility;  A  review  of  the  materials  science, Proceeding of the Australian Combustion Symposium.
Kim,  K.H.,  Kim,  J.-Y .,  Cho,  T.-S.  and  Choi,  J.W., (2012).  Influence  of  pyrolysis  temperature  on  physicochemical properties  of  biochar  obtained  from  the  fast  pyrolysis  of  pitch  pine  (  Pinus  rigida).  Bioresource technology, 118:  158-162.
Lal,  R.,  (2004).  Carbon sequestration in dryland ecosystems. Environmental management,  33(4):  528-544.
Lehmann,  J. and Joseph, S.,( 2009).  Biochar  for environmental management:  science and technology. Earthscan.
Liang,  B.  et  al.,  (2006).  Black  carbon  increases  cation  exchange  capacity  in  soils.  Soil  Science  Society  of  America Journal, 70(5):  1719-1730.
Lua,  A.C.,  Yang,  T.  and  Guo,  J.,  (2004).  Effects  of  pyrolysis  conditions  on  the  properties  of  activated  carbons prepared from  pistachio-nut shells. Journal of analytical  and applied pyrolysis, 72(2):  279-287.
Maschio,  G.,  Koufopanos,  C.  and  Lucchesi,  A.,  (1992).  Pyrolysis,  a  promising  route  for  biomass  utilization. Bioresource technology, 42(3):  219-231.
Mohan, D., Pittman,  C.U. and  Steele, P.H.,  (2006). Pyrolysis  of wood/biomass  for bio -oil:  a critical  review. Energy  & Fuels, 20(3):  848-889.
Novak, J.M. et al., (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy  sand. Annals of Environ mental Science, 3(1):  2.
Pearson,  J.  and  Stewart,  G.R.,  (1993).  The  deposition  of  atmospheric  ammonia  and  its  effects  on  plants.  New phytologist, 125(2):  283-305.
Peters,  J.  and  Basta,  N.,  (1996).  Reduction  of  excessive  bioavailable  phosphorus  in  soils  by  using  municipal  and industrial wastes. Journal of environmental quality, 25(6):  1236-1241.
Ryan, J., Estefan, G.  and Rashid, A., (2007).  Soil  and plant analysis laboratory manual. ICARDA .
Schumacher,  B.A.,  (2002).  Methods  for  the  determination  of  total  organic  c arbon  (TOC)  in  soils  and  sediments. Ecological  Risk  Assessment Support Center: 1-23.
Shinogi, Y. and Kanri, Y., (2003). Pyrolysis of  plant, animal and human waste: physical and chemical  characterization of the pyrolytic products. Bioresource technology, 90(3):  241 -247.
Singh, B., Singh,  B.P. and  Cowie, A.L.,  (2010).  Characterisation  and evaluation  of biochars  for their  application as  a soil amendment.  Soil Research, 48(7):  516-525.
Singh, B.P., Cowie, A.L. and Smernik, R.J., (2012). Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temp erature. Environmental  Science & Technology, 46(21):  11770-11778.
Sohi,  S.,  Krull,  E.,  Lopez-Capel,  E.  and  Bol,  R., (2010).  A  review  of  biochar  and  its  use  and  function  in  soil. Advances in agronomy, 105:  47-82.
Sommer,  S.G.  and  Dahl,  P., (1999).  Nutrient  and  carbon  balance  during  the  composting  of  deep  litter.  Journal  of Agricultural  Engineering Research, 74(2):  145-153.
Song,  W.  and  Guo,  M.,  (2012).  Quality  variations  of  poultry  litter  biochar  generated  at  different  pyrolysis temperatures. Journal of analytical and applied pyrolysis, 94:  138-145.
Thangalazhy-Gopakumar,  S.  et  al.,  (2010).  Physiochemical  properties  of  bio -oil  produced  at  various  temperatures from  pine wood using an auger reactor. Bioresource technology, 101(21):  8389 -8395.
Tsai,  W.-T.,  Liu,  S.-C.,  Chen,  H.-R.,  Chang,  Y .-M.  and  Tsai,  Y.-L.,  (2012).  Textural  and  chemical  properties  of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2): 198-203.
Woolf,  D.,  Amonette,  J.E.,  Street-Perrott,  F.A.,  Lehmann,  J.  and  Joseph,  S., (2010).  Sustainable  biochar  to mitigate global climate  change. Nature communications,  1:  56.