Influence of leading teleconnection indices on key climate variables—precipitation and Tmin/Tmax—at Saveh Synoptic Station, Iran.

Document Type : Research Paper

Author

Department of Irrigation and reclamation-Faculty of Agriculture and Nature Resources -Tehran University-Karaj-Iran

10.22059/ijswr.2025.400345.669995

Abstract

This study interrogates the influence of fifteen atmospheric–oceanic teleconnections (AMM, AMO, AO, EAWR, EP–NP, MEI, NAO, ONI, PDO, PNA, QBO30Z, SCAND, SOI, TNA, TSA) on precipitation and temperature at the Saveh synoptic station over 1993–2024. Monthly indices were retrieved from NOAA/NCEI, while precipitation and temperature were obtained from the Iranian Meteorological Organization. Direct associations were quantified using the Spearman rank correlation to avoid distributional assumptions. To extract dominant structures, we employed Rock‑PCA—an extension of EOF/PCA. Findings reveal EP–NP as the most influential controller of temperature on monthly and seasonal scales; Pacific signals (e.g., MEI/ONI) also manifest more robustly in temperature than in annual precipitation. For precipitation, Atlantic metrics—especially AMM and AO—are pivotal: negative AMM is linked to rainfall reduction (notably in autumn), whereas negative AO is associated with modest wet anomalies in October–December across the central Iranian Plateau, including Saveh; positive AO generally suppresses rainfall. Composite and co‑occurrence analyses, together with 1–3‑month lag responses, substantially improve predictability. Operationally, we recommend monitoring EP–NP for temperature outlooks and combining EP–NP with Atlantic indices (TNA/TSA/AMO/AMM) for seasonal precipitation guidance. The contrast between annual and seasonal/extreme scales explains the weak annual rainfall correlations versus stronger seasonal signals.

Keywords

Main Subjects


Introduction

Teleconnections orchestrate energy–mass exchanges across basins and modulate hydro‑climate variability from the synoptic to decadal scales. In West Asia and Iran, compound interactions among Pacific and Atlantic modes shape rainfall intermittency, temperature extremes, and dust activity. Motivated by heightened vulnerability of water and agriculture in the central Iranian Plateau, this study examines fifteen indices and their lagged/co‑occurring impacts on Saveh hydro‑climate over 1993–2024.

Methodology

We quantify monotonic associations via the Spearman rank correlation. To uncover dominant, potentially nonlinear structures, we use Rock‑PCA, which generalizes complex EOF/PCA by (i) encoding phase/lag through the Hilbert analytic signal, (ii) mapping to an RKHS with linear or nonlinear kernels, and (iii) applying Varimax/ProMax rotation for interpretability. Composite analyses link teleconnection phases to geopotential‑height and low‑level temperature anomalies (500/850 hPa, 2‑m temperature), clarifying dynamical pathways.

Sampling Procedures

Monthly teleconnection indices (AMM, AMO, AO, EAWR, EP–NP, MEI, NAO, ONI, PDO, PNA, QBO30Z, SCAND, SOI, TNA, TSA) were obtained from NOAA/NCEI. Co‑located monthly precipitation and temperature for the Saveh synoptic station were retrieved from the Iranian Meteorological Organization. The analysis period spans January 1993–December 2024. Lags up to three months were evaluated to capture delayed hydro‑climate responses.

Results

EP–NP emerges as the primary controller of temperature on monthly/seasonal scales; Pacific signals (MEI/ONI) show clearer links to temperature than to annual rainfall. For precipitation, Atlantic modes dominate: negative AMM aligns with rainfall reduction—especially in autumn—while negative AO corresponds to modest wet anomalies during October–December; positive AO tends to suppress rainfall. Composite maps corroborate these findings via changes in mid‑tropospheric waveguides and subtropical jet displacement. The seasonal scale exhibits markedly stronger, more interpretable signals than annual aggregates, consistent with extreme‑event sensitivity.

Conclusion

Operationally, monitoring EP–NP is crucial for temperature outlooks, whereas seasonal precipitation guidance benefits from combining EP–NP with Atlantic indices (AMM/AMO/TNA/TSA), while accounting for 1–3‑month lags and co‑occurrence patterns. These insights motivate hybrid statistical–ML prediction systems that assimilate teleconnections to enhance early warning and water‑resources planning in central Iran.

Authors’ contributions

 Mr. SaadatMoghaddasi: Gathering the experimental data, Data curation, Software; Methodology; Investigation, Conceptualization, Methodology, Writing-Reviewing and Editing, Formal analysis, Analyzing the experimental data.

Data Availability Statement

Data available on request from the author.

Ethical considerations

The author avoided data fabrication, falsification, plagiarism, and misconduct.

Conflict of interest

All authors declare that they have no conflict of interest.

Afsari, R., Nazari-Sharabian, M., Hosseini, A., & Karakouzian, M. (2024). Projected climate change impacts on very heavy precipitation and dry days in Iran’s metropolises. Water, 16(16), 2226. https://doi.org/10.3390/w16162226
Ahmadi, M., Kamangar, M., Salimi, S., Hosseini, S. A., Khamoushian, Y., Heidari, S., ... & Yarmoradi, Z. (2022). A new approach in evaluation impacts of teleconnection indices on temperature and precipitation in Iran. Theoretical and Applied Climatology, 150(1), 15-33. https://doi.org/10.1007/s00704-022-04138-w.
Akhtar‑Danesh, N. (2023). Impact of factor rotation on Q‑methodology analysis. PLOS ONE, 18(8), e0286587. https://doi.org/10.1371/journal.pone.0286587
Alizadeh, O., & Mousavizadeh, M. (2025). Impact of ENSO on extreme precipitation in Southwest Asia. Global and Planetary Change, 244, 104645. https://doi.org/10.1016/j.gloplacha.2024.104645
Al Senafi, F., Ramadan, E., & Al-Said, T. (2024). Climate variability of air temperature and its warming over the Persian Gulf and Arabian Peninsula. Earth Systems and Environment, 8, 665–684. https://doi.org/10.1007/s41748-024-00395-z
Amini, M., Ghadami, M., Fathian, F., & Modarres, R. (2020). Teleconnections between oceanic–atmospheric indices and drought over Iran using quantile regressions. Hydrological Sciences Journal, 65(13), 2286-2295. https://doi.org/10.1080/02626667.2020.1802029.
Asakereh, H., Abolhosseini, S. A., & Faghih, A. (2023). An investigation into trends in frequency and proportion of extreme precipitation in Iran. Meteorological Applications, 30(3), e2117. https://doi.org/10.1002/met.2117
Azad, M., & Karimi, K. (2020). Spatiotemporal analysis of drought and its relationship with teleconnection indices in Iran. Theoretical and Applied Climatology, 140, 1039–1052. https://doi.org/10.1007/s00704-020-03156-6.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., ... & Takahashi, M. (2001). The Quasi‐Biennial Oscillation. Reviews of Geophysics, 39(2), 179–229. https://doi.org/10.1029/1999RG000073.
Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H (2021). The Quasi‐Biennial Oscillation. Reviews of Geophysics, 59(2), e2020RG000702. https://doi.org/10.1029/2020RG000702.
Barnston, A. G., & Livezey, R. E. (1987). Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review, 115(6), 1083–1126. https://doi.org/10.1175/1520-0493(1987)115<1083
Bellomo, K., Clement, A. C., Murphy, L. N., & Polvani, L. M. (2023). Impacts of a weakened AMOC on precipitation over the Northern Hemisphere. Climate Dynamics, 61, 3121–3138. https://doi.org/10.1007/s00382-023-06754-2
Bohrium study. (2021). Evaluating the predictability of atmospheric-oceanic signals affecting Iran’s droughts employing intelligence-based and stochastic methods. https://doi.org/10.1016/j.scitotenv.2021.151521.
Bueso, D., Piles, M., & Camps‑Valls, G. (2022). Let’s consider more general nonlinear approaches to study teleconnections of climate variables. arXiv preprint, arXiv:2212.07635. https://doi.org/10.48550/arXiv.2212.07635
Cape, J. (2024). On varimax asymptotic in network models and spectral methods. arXiv preprint, arXiv:2403.05461. https://doi.org/10.48550/arXiv.2403.05461
Chen, D., Tian, Y., & Zhang, T. (2019). Impacts of teleconnection patterns on precipitation and temperature variability in Iran. Climate Dynamics, 53, 6151–6167. https://doi.org/10.1007/s00382-019-04920-x.
Chen, H., Sun, J., & Li, L. (2019). Influence of North Atlantic Oscillation on winter precipitation in Iran. Atmospheric Research, 227, 147-156. https://doi.org/10.1016/j.atmosres.2019.05.002.
Chiang, J. C. H., & Vimont, D. J. (2004). Analogous Pacific and Atlantic Meridional Modes of Tropical Atmosphere–Ocean Variability. Journal of Climate, 17(12), 2417–2427. https://doi.org/10.1175/1520-0442
Columbu, A., Spötl, C., De Waele, J. (2022). Central Mediterranean rainfall varied with high Northern Hemisphere temperatures. Communications Earth & Environment, 3, 509. https://doi.org/10.1038/s43247-022-00509-3
Cos, P., Marcos‑Matamoros, R., Donat, M. G., Mahmood, R., & Doblas‑Reyes, F. J. (2024). Near‑term Mediterranean summer temperature climate projections: A comparison of constraining methods. *Journal of Climate, 37*(17), 4367–4388. https://doi.org/10.1175/JCLI-D-23-0494.1
Dai, A., Tan, Y., & Hu, J. (2020). Decadal variability of teleconnection influences on regional precipitation and temperature. Climate Dynamics, 55(1), 101-118. https://doi.org/10.1007/s00382-020-05209-y.
Dehghani, M., Salehi, S., Mosavi, A., et al. (2020). Spatial Analysis of Seasonal Precipitation over Iran: Co‑Variation with Climate Indices. ISPRS Int. J. Geo‑Inf., 9(2), 73. https://doi.org/10.3390/ijgi9020073.
Dmitry Iudin .(2021). Lightning as an asymmetric branching network. Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), 46 Ul’yanov Street, Nizhny Novgorod 603950, Russia https://doi.org/10.1016/j.atmosres.2021.105560.
Enfield, D. B., & Mayer, D. A. (1997). Tropical Atlantic Sea surface temperature variability and its relation to El Niño–Southern Oscillation. Journal of Geophysical Research: Oceans, 102(C1), 929–945. https://doi.org/10.1029/96JC03296
Enfield, D. B., Mestas-Nuñez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28(10), 2077–2080. https://doi.org/10.1029/2000GL012745.
Enfield, D. B., & Mayer, D. A. (2020). Atlantic Multidecadal Oscillation and its Impacts. Journal of Climate, 33, 2933–2951. https://doi.org/10.1175/JCLI-D-19-0202.1.
Fang, K., Tao, Q., Lv, K., He, M., Huang, X., & Yang, J. (2024). Kernel PCA for out‑of‑distribution detection. NeurIPS 2024 Proceedings, Proc. 38th NeurIPS.
Fatemi, Mehran, Omidvar, Kamal, Mesgari, Ebrahim and Mehdi Narangi Fard (2015). "Spatial analysis and investigation of remote communication patterns with drought in central Iran." Earth and Space Physics 42, p. 4 (2016): 49-61. https://doi.org/ 10.22059/jesphys.2016.58915. (In Persian).
Francis, D., & Fonseca, R. (2024). Recent and projected changes in climate patterns in the Middle East and North Africa (MENA) region. Scientific Reports, 14, 10279. https://doi.org/10.1038/s41598-024-60976-w
Helali, J., Ghaleni, M. M., Hosseini, S. A., Siraei, A. L., Saeidi, V., Safarpour, F., ... & Lotfi, M. (2022). Assessment of machine learning model performance for seasonal precipitation simulation based on teleconnection indices in Iran. Arabian Journal of Geosciences, 15(15), 1343.https://doi.org/10.1007/s12517-022-10640-2.
Hochman, A., & Gildor, H. (2025). Synergistic effects of El Niño–Southern Oscillation and the Indian Ocean Dipole on Middle Eastern subseasonal precipitation variability and predictability. *Quarterly Journal of the Royal Meteorological Society, 151*, e4903. https://doi.org/10.1002/qj.4903
Hoell, A., Robinson, R., Agel, L., Barlow, M., Breeden, M. L., Eischeid, J. K., ... Quan, X.-W. (2024). Changes to Middle East and Southwest Asia compound drought and heat since 1999. Journal of Climate, 37(1), 269–287. https://doi.org/10.1175/JCLI-D-23-0194.1
Horan, M. F., Mariotti, A., Schubert, S. D., Molod, A., & Pegion, P. (2024). Winter precipitation predictability in Central Southwest Asia and its representation in seasonal forecast systems. npj Climate and Atmospheric Science, 7, 94. https://doi.org/10.1038/s41612-024-00594-5
Huang, G., Liu, Y., & Huang, R. (2011). The interannual variability of summer rainfall in the arid and semiarid regions of northern China and its association with the Northern Hemisphere circumglobally teleconnection. Advances in Atmospheric Sciences, 28(2), 257-268 https://doi.org/10.1007/s00376-010-9225-x.
Javorskyj, I., Yuzefovych, R., Lychak, O., & Matsko, I. (2024). Hilbert transform for covariance analysis of periodically nonstationary random signals with high‑frequency modulation. ISA Transactions, 144, 452–481. https://doi.org/10.1016/j.isatra.2023.10.025
Kim, S.-K., Timmermans, M.-L., Yang, Q., et al. (2024). The summer North Atlantic Oscillation, Arctic Sea ice, and hemispheric teleconnections. Science Advances, 10, eadk6693. https://doi.org/10.1126/sciadv.adk6693
Khojaste Gholami, Vahid, Salahi, Broumand, Mohammadi, & Gholam Hassan. (2022). Analysis of the simultaneous occurrence of North Atlantic Oscillation and Arctic Oscillation phases with Enso phases and its effect on Iran's winter temperature. Natural Geography Research, 54(3), 347-364.http://doi.org/ 10.22059/jphgr.2022.340146.1007686. (In Persian)
Le, P. V. V. (2023). Climate-driven changes in the predictability of seasonal precipitation. Nature Communications, 14, 4029. https://doi.org/10.1038/s41467-023-39463-9
Lieber, R., King, A., Brown, J., Ashcroft, L., Freund, M., & McMichael, C. (2022). ENSO teleconnections more uncertain in regions of lower socioeconomic development. *Geophysical Research Letters, 49*, e2022GL100553. https://doi.org/10.1029/2022GL100553
Li, L., Zhang, J., & Wang, S. (2019). Teleconnection indices and seasonal climate prediction over Asia. Theoretical and Applied Climatology, 137, 885-901. https://doi.org/10.1007/s00704-018-2639-9.
Lim, E. P., Hendon, H. H., & Thompson, D. W. (2018). Seasonal evolution of stratosphere‐troposphere coupling in the Southern Hemisphere and implications for the predictability of surface climate. Journal of Geophysical Research: Atmospheres, 123(21), 12-002.https://doi.org/10.1002/qj.3078.
Lu, M., Huang, B., Li, Z., Yang, S., & Wang, Z. (2019). Role of Atlantic air–sea interaction in modulating the effect of Tibetan Plateau heating on the upstream climate over Afro-Eurasia–Atlantic regions. Climate Book, 53(1), 509.
Mahjoubi, Emad, Bakshesh Rabat, Salman, & Hosseinpour. (2021). An overview of some studies on the effect of the links on the rainfall in Iran between 1383 and 1397. Newar, 45(112-113), 29-45. https://doi.org/ .2021.246857.1167NIVAR10.3046. (In Persian).
Malaekeh, S., Safaie, A., Shiva, L., & Tabari, H. (2022). Spatio-temporal variation of hydro-climatic variables and extreme indices over Iran based on reanalysis data. Stochastic Environmental Research and Risk Assessment, 36(11). https://doi.org/10.1038/s41598-022-12904-7.
Malik, A., Stenchikov, G., Mostamandi, S., Parajuli, S., Lelieveld, J., Zittis, G., Ahsan, M. S., Atique, L., & Usman, M. (2024). Accelerated historical and future warming in the Middle East and North Africa. *Journal of Geophysical Research: Atmospheres, 129*(22), e2024JD041625. https://doi.org/10.1029/2024JD041625
Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., & Francis, R. C. (1997). A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society, 78(6), 1069–1079. https://doi.org/10.1175/1520-0477(1997)078<1069: APICOW>2.0.CO;2.
Marukatat, S. (2023). Tutorial on PCA and approximate kernel PCA. Artificial Intelligence Review, 56, 5445–5477. https://doi.org/10.1007/s10462-022-10297-z
Matsuki, A., Kori, H., & Kobayashi, R. (2023). An extended Hilbert transform method for reconstructing the phase from an oscillatory signal. Scientific Reports, 13, 3535. https://doi.org/10.1038/s41598-023-30405-5
Mezzina, B., García‑Serrano, J., Ambrizzi, T., Matei, D., Manzini, E., & Bladé, I. (2023). Tropospheric pathways of the late‑winter ENSO teleconnection to Europe. *Climate Dynamics, 60*, 3307–3317. https://doi.org/10.1007/s00382-022-06508-6
Mohino, E., Gervais, M., Lopez-Parages, J., & Rodríguez-Fonseca, B. (2024). Impact of Atlantic multidecadal variability on rainfall intensity over the Sahel. Earth System Dynamics, 15, 15–28. https://doi.org/10.5194/esd-15-15-2024
Monerie, P.-A., Biasutti, M., Mignot, J., Mohino, E., Pohl, B., & Zappa, G. (2023). Storylines of Sahel precipitation change: Roles of the North Atlantic and Euro-Mediterranean temperature. Journal of Geophysical Research: Atmospheres, 128, e2023JD038712. https://doi.org/10.1029/2023JD038712
Najafi, M. S. (2023). Climate zones in Iran. Meteorological Applications, 30(6), e2147. https://doi.org/10.1002/met.2147
NOAA Climate Prediction Center. (2018). ENSO: Recent Evolution, Current Status and Predictions. https://doi.org/10.25923/ytkx-gn91.
Noorisameleh, Z., Gough, W. A., & Mirza, M. M. Q. (2021). Persistence and spatial–temporal variability of drought severity in Iran. Environmental Science and Pollution Research, 28(35), 48808-48822 https://doi.org/10.1007/s11356-021-14100-4.
Nuroozi, H. (2025). The relationship between moisture in the low level of the atmosphere and seasonal precipitation over Iran. Meteorological Applications, 32(4), e70033. https://doi.org/10.1002/met.70033
Polo, I., Lazar, A., Rodríguez-Fonseca, B., & Mignot, J. (2018). Oceanic control of the interannual variability of the Tropical South Atlantic (TSA). Climate Dynamics, 51, 3539–3555. https://doi.org/10.1007/s00382-018-4084-3.
Poorkarim, Reza, Asakereh, Hossein, & Martín-Vide, Javier. (2024). Maximum daily precipitation in Iran (1979–2018). Atmósfera, 38, 675–686. https://doi.org/10.20937/ATM.53326
Radwan, N. (2025). Seasonal precipitation and anomaly analysis in Middle Eastern countries based on satellite rainfall data (2000–2023). Water, 17(10), 1475. https://doi.org/10.3390/w17101475
Rashid, I. U., Abid, M. A., Osman, M., Kucharski, F., Ashfaq, M., Weisheimer, A., Almazroui, M., Torres‑Alavez, J. A., & Afzaal, M. (2024). Predictability of the early summer surface air temperature over western South Asia and the role of ENSO. *Climate Dynamics, 62*(9), 9361–9375. https://doi.org/10.1007/s00382-024-07399-5
Rezaei, A., Karami, K., Tilmes, S., & Moore, J. C. (2023). Changes in global teleconnection patterns under global warming and stratospheric aerosol intervention scenarios. Atmospheric Chemistry and Physics, 23(10), 5835-5850. https://doi.org/10.5194/egusphere-2022-974.
Raziei, Tayeb, Isabella Bordi, Joao Santos and Abbas Mofidi (2012). "Types of atmospheric circulation and daily winter rainfall in Iran". International Journal of Climatology 33, no. 9.https://doi.org10.1002/joc.3596 (In Persian).
Rezaeian, J., Araghinejad, S., & Massah Bavani, A. (2022). Quantification of lagged effects of teleconnections on drought in Iran. International Journal of Climatology, 42, 5133–5148. https://doi.org/10.1002/joc.7513.
Rohe, K., & Zeng, M. (2023). Vintage factor analysis with Varimax performs statistical inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 85(4), 1037–1066. https://doi.org/10.1093/jrsssb/qkad029
Roshan, A., Sedghi, H., Sharifan, R. A., & Porhemmat, J. (2019). Climate change impacts on intensity duration frequency curves of precipitation: A case study of Shiraz synoptic station, Iran. Journal of Agrometeorology, 21(2), 159-165. https://doi.org/10.54386/jam.v21i2.226.
Sabatani, D., & Gualdi, S. (2025). ENSO teleconnections with the North Atlantic–European sector during November. *npj Climate and Atmospheric Science, 8*, 1064. https://doi.org/10.1038/s41612-025-01064-2
Sabziparvar, A. A., Mirmasoudi, S. H., Tabari, H., Nazemosadat, M. J., & Maryanaji, Z. (2011). ENSO teleconnection impacts on reference evapotranspiration variability in some warm climates of Iran. International Journal of Climatology, 31(11), 1710-1723. https://doi.org/10.3390/w10111550.
Saharwardi, Md Saquib, Dasari, Hari Prasad, Aggarwal, Vaneet, Ashok, Karumuri, & Hoteit, Ibrahim. (2023). Long-Term Variability in the Arabian Peninsula Droughts Driven by the Atlantic Multidecadal Oscillation. Earth’s Future, 11(11), e2023EF003549. https://doi.org/10.1029/2023EF003549
Stuivenvolt‑Allen, J., Wang, S.‑Y. S., Chikamoto, Y., Meyer, J. D. D., Johnson, Z. F., & Deng, L. (2023). Growing Pacific linkage with western North Atlantic explosive cyclogenesis. *Journal of Climate, 36*(20), 7073–7090. https://doi.org/10.1175/JCLI-D-22-0784.1
Sun, Q., Zhang, W., & Chen, S. (2024). Strengthened combined impact of the Pacific and Atlantic meridional modes on Northern Hemisphere climate. Journal of Climate, 37(12), 4021–4037. https://doi.org/10.1175/JCLI-D-23-0582.1
Tatlı, H. (2025). Spatial and multifractal features of Mediterranean–Middle East precipitation: Insights from ERA5 (1940–2024). Environmental Earth Sciences, 84, 12412. https://doi.org/10.1007/s12665-025-12412-z
Tejedor, E., Benito, G., Serrano‑Notivoli, R., González‑Rouco, J. F., Esper, J., & Büntgen, U. (2024). Recent heatwaves as a prelude to climate extremes in the western Mediterranean region. *npj Climate and Atmospheric Science, 7*, 218. https://doi.org/10.1038/s41612-024-00771-6
Thompson, D. W. J., & Wallace, J. M. (1998). The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters, 25(9), 1297–1300. https://doi.org/10.1029/98GL00950.
Trenberth, K. E. (1984). Signal versus Noise in the Southern Oscillation. Monthly Weather Review, 112(2), 326–332. https://doi.org/10.1175/1520-0493(1984)112<0326
Tzyrkalli, Anna, Economou, Theo, Lazoglou, Georgia, Constantinidou, Katiana, Hadjinicolaou, Panos, & Lelieveld, Johannes. (2024). Urban Heat Island Trends in the Middle East and North Africa: A statistical approach. International Journal of Climatology, 44(11), 3998–4008. https://doi.org/10.1002/joc.8563
Vicente-Serrano, S. M., Peña-Gallardo, M., El Kenawy, A. (2025). High temporal variability, not monotonic trends, dominates Mediterranean precipitation. Nature, 637, 123–129. https://doi.org/10.1038/s41586-024-08576-6
Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter. Monthly Weather Review, 109(4), 784–812. https://doi.org/10.1175/1520-0493(1981)109<0784: TITGHF>2.0.CO;2
Wang, H., Chen, Y., Pan, Y., & Li, W. (2015). Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. Journal of hydrology, 523, 283-296. https://doi.org/10.1016/j.jhydrol.2015.01.055.
Wolter, K., & Timlin, M. S. (2011). El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended Multivariate ENSO Index (MEI. Ext). International Journal of Climatology, 31(7), 1074–1087. https://doi.org/10.1002/joc.2336.
Yang, R., & Xing, B. (2022). Teleconnections of large-scale climate patterns to regional drought in mid-latitudes: A case study in Xinjiang, China. Atmosphere, 13(2), 230. https://doi.org/10.3390/atmos13020230.
Zhang, Q., Chang, P., Fu, D., Yeager, S. G., Danabasoglu, G., Castruccio, F., & Rosenbloom, N. (2024). Enhanced Atlantic Meridional Mode predictability in a high-resolution prediction system. Science Advances, 10, eado6298. https://doi.org/10.1126/sciadv.ado6298