Abuel-Naga, H. M., Bergado, D. T., & Bouazza, A. (2008). Thermal Conductivity Evolution of Saturated Clay under Consolidation Process. International Journal of Geomechanics, 8(2), 114–122. https://doi.org/10.1061/(asce)1532-3641(2008)8:2(114)
Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter.
Soil science society of America Journal, 64(4), 1285-1290.
https://doi.org/10.2136/sssaj2000.6441285x.
Alrbai, M., Ahmad, A. D., Al-Dahidi, S., Abubaker, A. M., Al-Ghussain, L., Alahmer, A., & Akafuah, N. K. (2023). Performance and sensitivity analysis of raw biogas combustion under homogenous charge compression ignition conditions. Energy, 283, 128486.. https://doi.org/10.1016/j.energy.2023.128486.
Al-Shammary, A. A. G., Caballero-Calvo, A., Jebur, H. A., Khalbas, M. I., & Fernández-Gálvez, J. (2022). A novel heat-pulse probe for measuring soil thermal conductivity: Field test under different tillage practices.
Computers and Electronics in Agriculture, 202, 107414.
https://doi.org/10.1016/j.compag.2022.107414.
Ben Ali, A. R., Yang, H., & Shukla, M. (2021). Brackish groundwater and reverse osmosis concentrate influence soil physical and thermal properties and pecan evapotranspiration. Soil Science Society of America Journal, 85(5), 1519-1533. https://doi.org/10.1002/saj2.20281
Campbell, G. S., Jungbauer Jr, J. D., Bidlake, W. R., & Hungerford, R. D. (1994). Predicting the effect of temperature on soil thermal conductivity. Soil science, 158(5), 307-313.
Chen, S. X. (2008). Thermal conductivity of sands. Heat and mass transfer, 44(10), 1241-1246. https://doi.org/10.1007/s00231-007-0357-1
Dec, D., Dörner, J., & Horn, R. (2009). Effect of soil management on their thermal properties. J. Soil Sci. Plant Nutr, 9(1), 26-39. http://dx.doi.org/10.4067/S0718-27912009000100003
Dong, L., Wang, W., Che, T., Wang, Y., Huang, X., Zhang, S., ... & Feng, J. (2025). Simultaneous retrieval of soil moisture and salinity in arid and semiarid regions using Sentinel-1 data and a revised dielectric model for salty soil.
Agricultural Water Management, 312, 109410.
https://doi.org/10.1016/j.agwat.2025.109410.
Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve.
Canadian geotechnical journal, 31(4), 521-532.
https://doi.org/10.1139/t94-061.
Fu, Y., Horton, R., & Heitman, J. (2025). Neural network estimation of thermal conductivity across full saturation for various soil types.
Computers and Electronics in Agriculture, 235, 110321.
https://doi.org/10.1016/j.compag.2025.110321.
Fu, Y., Ghanbarian, B., Horton, R., & Heitman, J. (2024). New insights into the correlation between soil thermal conductivity and water retention in unsaturated soils. Vadose Zone Journal, 23(1), e20297. https://doi.org/10.1002/vzj2.20297
Fu, Y., Ghanbarian, B., Horton, R., & Heitman, J. (2023). Robust calibration and evaluation of a percolation-based effective‐medium approximation model for thermal conductivity of unsaturated soils.
Geoderma, 438, 116631.
https://doi.org/10.1016/j.geoderma.2023.116631
Gran, M., Carrera, J., Massana, J., Saaltink, M. W., Olivella, S., Ayora, C., & Lloret, A. (2011). Dynamics of water vapor flux and water separation processes during evaporation from a salty dry soil. Journal of Hydrology, 396(3-4), 215-220. https://doi.org/10.1016/j.jhydrol.2010.11.011.
Grossman, R. B. and Reinsch, T.G. (2002). Bulk density and linear extensibility in: methods of soil analysis part 4. Physical methods. Dane, J. H. and G. C. Topp (Eds) soil science soc. Am. Book series no. 5. ASA and SSA Madison, WI, pp: 201 –228
Guo, Y., & (Bill) Yu, X. (2017). Characterizing the surface charge of clay minerals with Atomic Force Microscope (AFM). AIMS Materials Science, 4(3), 582–593. https://doi.org/10.3934/matersci.2017.3.582
He, H., Noborio, K., Johansen, Ø., Dyck, M. F., & Lv, J. (2020b). Normalized concept for modelling effective soil thermal conductivity from dryness to saturation. European Journal of Soil Science, 71(1), 27-43. https://doi.org/10.1111/ejss.12820
He, H., Dyck, M. F., Horton, R., Li, M., Jin, H., & Si, B. (2018). Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method.
Advances in agronomy, 148, 173-230.
https://doi.org/10.1016/bs.agron.2017.11.003.
He, H., Zhao, Y., Dyck, M. F., Si, B., Jin, H., Lv, J., & Wang, J. (2017). A modified normalized model for predicting effective soil thermal conductivity. Acta Geotechnica, 12(6), 1281-1300. https://doi.org/10.1007/s11440-017-0563-z.
Kojima, Y., Kawashima, T., Noborio, K., Kamiya, K., & Horton, R. (2021). A dual-probe heat pulse-based sensor that simultaneously determines soil thermal properties, soil water content and soil water matric potential.
Computers and Electronics in Agriculture, 188, 106331.
https://doi.org/10.1016/j.compag.2021.106331
Kolawole, O., Rehmatullah, S., & Shah, V. (2024). Evaluating soil thermal conductivity for buried infrastructure: Impact of water salinity, mineral composition, and moisture content on heat transfer.
Progress in Engineering Science, 1(2-3), 100014.
https://doi.org/10.1016/j.pes.2024.100014
Lin, Y., Zhang, X., Ling, X., Kuang, C., Yu, A., & Hu, L. (2024). Experimental study of downstream local heat flux of pool fires under relatively strong cross flows.
International Journal of Thermal Sciences, 196, 108710.
https://doi.org/10.1016/j.ijthermalsci.2023.108710
Liu, X., Wang, Y., Liang, Y., & Li, J. (2024). CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline.
International Journal of Hydrogen Energy, 60, 354-368.
https://doi.org/10.1016/j.ijhydene.2024.02.092.
Liu, Y., Li, H., Zheng, Z., Niu, A., Liu, S., Li, W., ... & Ma, H. (2022). Rosa rugosa polysaccharide induces autophagy-mediated apoptosis in human cervical cancer cells via the PI3K/AKT/mTOR pathway.
International Journal of Biological Macromolecules, 212, 257-274.
https://doi.org/10.1016/j.ijbiomac.2022.05.023.
Lu, S., Lu, Y., Peng, W., Ju, Z., & Ren, T. (2019). A generalized relationship between thermal conductivity and matric suction of soils. Geoderma, 337, 491-497. https://doi.org/10.1016/j.geoderma.2018.09.057
Malek, K., Malek, K., & Khanmohammadi, F. (2021). Response of soil thermal conductivity to various soil properties. International Communications in Heat and Mass Transfer, 127, 105516. https://doi.org/10.1016/j.icheatmasstransfer.2021.105516
Manual, O. S. (2016). KD2 Pro Thermal Properties Analyzer.
Mazirov, M. A., & Makarychev, S. V. (2002). Thermophysical Characterization of the Altai and Western Tien Shan Soil Cover.
Mochizuki, H., Miyazaki, T., & Nakano, M. (1998). The effect of salts on thermal conductivity of Toyoura sand. Transactions of the Japanese Society of Irrigation, Drainage and Reclamation Engineering (Japan), (198).
Nikolaev, I. V., Rosen, M. A., & Leong, W. H. (2013). Experimental Investigation of Soil Thermal Conductivity Over a Wide Temperature Range. International Journal of Thermophysics, 34(6), 1110–1129.
https://doi.org/10.1007/s10765-013-1456-5
Pan, M., Huang, Q., Feng, R., & Hang, G. (2017). Estimation of hydraulic and thermal parameters in saturated layered porous media based on heat tracing method. J. Hydraul. Eng, 48(10).
Quintard, M. (2016a). Introduction to heat and mass transport in porous media.
Quintard, M. (2016b). Heat Transfer in Composite Materials and Porous Media: Multiple‐Scale Aspects and Effective Properties. Heat Transfer in Polymer Composite Materials: Forming Processes, 175-201.
Saxena, V. (2025). Water quality, air pollution, and climate change: investigating the environmental impacts of industrialization and urbanization. Water, Air, & Soil Pollution, 236(2), 73. https://doi.org/10.1007/s11270-024-07702-4.
Sepaskhah, A.R., Mazaheri-Tehrani, M. (2024). A sigmoidal model for predicting soil thermal conductivity-water content function in room temperature.
Sci Rep 14, 17272.
https://doi.org/10.1038/s41598-024-68455-y.
Song, X., Vanapalli, S. K., & Ren, J. (2024). Prediction of thermal conductivity of frozen soils from basic soil properties using ensemble learning methods. Geoderma, 450, 117053. https://doi.org/10.1016/j.geoderma.2024.117053
Sreedeep, S., & Singh, D. N. (2011). Critical review of the methodologies employed for soil suction measurement. International Journal of Geomechanics, 11(2), 99-104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000022
Tai, P., Zhou, C., Zhou, Y., & Cui, S. (2020). Thermal conductivity of Toyoura sand at various moisture and stress conditions. In E3S Web of Conferences (Vol. 205, p. 04010). EDP Sciences.
Tikhonravova, P. I. (2007). Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the Transvolga region. Eurasian Soil Science, 40(1), 47-50. https://doi.org/10.1134/S1064229307010073
Van Rooyen, M., & Winterkorn, H. F. (1959). Structural and textural influences on thermal conductivity of soils.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003
Wang, J., He, H., Dyck, M., & Lv, J. (2020). A review and evaluation of predictive models for thermal conductivity of sands at full water content range. Energies, 13(5), 1083. https://doi.org/10.3390/en13051083
Wang, Z., Zhang, N., Ding, J., Li, Q., & Xu, J. (2020). Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction. International Journal of Heat and Mass Transfer, 147, 118899. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899
Wu, R., Tinjum, J. M., & Likos, W. J. (2015). Coupled thermal conductivity dryout curve and soil–water characteristic curve in modeling of shallow horizontal geothermal ground loops. Geotechnical and Geological Engineering, 33(2), 193-205. https://doi.org/10.1007/s10706-014-9811-2.
Xiong, K., Feng, Y., Jin, H., Liang, S., Yu, K., Kuang, X., & Wan, L. (2023). A new model to predict soil thermal conductivity. Scientific Reports, 13(1), 10684. https://doi.org/10.1038/s41598-023-37413-5
Xue, W., Wang, Y., Chen, Z., & Liu, H. (2023). An integrated model with stable numerical methods for fractured underground gas storage.
Journal of Cleaner Production, 393, 136268.
https://doi.org/10.1016/j.jclepro.2023.136268.
Yan, X., Duan, Z., & Sun, Q. (2021). Influences of water and salt contents on the thermal conductivity of loess. Environmental Earth Sciences, 80(2), 52. https://doi.org/10.1007/s12665-020-09335-2
Yan, H., He, H., Dyck, M., Jin, H., Li, M., Si, B., & Lv, J. (2019). A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm. Geoderma, 353, 227-242. https://doi.org/10.1016/j.geoderma.2019.06.031
Yu, X., Zheng, G., Zhou, H., & Chai, J. (2021). Influence of geosynthetic reinforcement on the progressive failure of rigid columns under an embankment load. Acta Geotechnica, 16(9), 3005-3012. https://doi.org/10.1007/s11440-021-01160-6
Zhang, X., Wang, T., Zuo, Y., & Han, Q. (2024). Salinity Effects on Soil Structure and Hydraulic Properties: Implications for Pedotransfer Functions in Coastal Areas. Land, 13(12), 2077.
https://doi.org/10.3390/land13122077
Zhang, N., Yu, X., Pradhan, A., & Puppala, A. J. (2017). A new generalized soil thermal conductivity model for sand–kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta geotechnica, 12(4), 739-752. https://doi.org/10.1007/s11440-016-0506-0
Zhao, Y., Wen, T., Shao, L., Chen, R., Sun, X., Huang, L., & Chen, X. (2020). Predicting hysteresis loops of the soil water characteristic curve from initial drying. Soil Science Society of America Journal, 84(5), 1642-1649. https://doi.org/10.1002/saj2.20125