Adesemoye AO, Torbert HA, & Kloepper JW. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.
Microbial Ecology, 58(4), pp. 921-929.
https://doi.org/10.1007/s00248-009-9531-y.
Ahmed E, & Holmström SJ. (2014). Siderophores in environmental research: roles and applications. Microbial Biotechnology, 7(3), pp. 196-208. https://doi.org/10.1111/1751-7915.12117.
Ali A, Karim H, Julhijjah R, Wahyuni S, Anita Sari F, Rante H, Hala Y, & Jumadi O. (2023). Plant growth-promotion and fusarium biocontrol by culturable indigenous actinomycetes isolated from Indonesian Onion cultivar. Available at SSRN 4376013. https://doi.org/ 10.2139/ssrn.4376013.
Alori ET, Glick BR, & Babalola OO. (2017). Microbial phosphorus solubilization and its potential for use in sustainable agriculture.
Frontiers in microbiology, 8, p. 971.
https://doi.org/10.3389/fmicb.2017.00971.
Anderson TH, & Domsch KH. (1993). The metabolic quotient for CO
2 (q CO
2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils.
Soil Biology and Biochemistry, 25(3), 393-395.
https://doi.org/10.1016/0038-0717(93)90140-7.
Babaniyi BR, Olaide TH, Apara IB, Ajibola OK, Olaoluwa DO, & Bisi-Omotosho A. (2024). Soil microbes and climate change mitigation. In Soil Microbiome in Green Technology Sustainability, 229-254. Cham: Springer Nature Switzerland. https://doi. 10.1007/978-3-031-71844-1-9.
Bharti C, Mishra P, Verma P, Bhattacharya A, Arora P, & Arora NK. (2025). Microorganisms for Sustainable Agriculture & Food Security. In Environmental Sustainability & Biotechnology: Opportunities & Challenges (pp. 53-94). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-96-9025-1_2.
Bhattacharyya PN, & Jha DK. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of microbiology & biotechnology, 28(4), pp.1327-1350. https://doi.org/10.1007/s11274-011-0979-9
Blagodatskaya Е, & Kuzyakov Y. (2008). Mechanisms of real & apparent priming effects & their dependence on soil microbial biomass & community structure: critical review. Biology & Fertility of Soils, 45(2), pp.115-131. https://doi.org/10.1007/s00374-008-0334-y
Bouizgarne B. (2022). Phosphate-solubilizing actinomycetes as biofertilizers & biopesticides: bioformulations for sustainable agriculture. In Microbial BioTechnology for Sustainable Agriculture, 1, p. 407-428. https://doi.org/10.1007/978-981-16-4843-4_13.
Bousselham M, Lemriss S, Dhiba D, Aallam Y, Souiri A, Abbas Y, Saïdi N, Boukcim H, & Hamdali H. (2022). Streptomycetaceae and Promicromonosporaceae: two actinomycetes families from Moroccan oat soils enhancing solubilization of natural phosphate. Microorganisms, 10(6), p.1116. https://doi.org/10.3390/microorganisms10061116
Chen M, & Ma LQ. (2001). Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Science Society of America Journal, 65(2), pp.491-499. https://doi.org/10.2136/sssaj2001.652491x.
Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, & Young CC. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology, 34(1), pp.33-41. https://doi.org/10.1016/j.apsoil.2005.12.002.
Chen Q, Song Y, An Y, Lu Y, & Zhong G. (2024). Mechanisms and impact of rhizosphere microbial metabolites on crop health, traits, functional components: a comprehensive review. Molecules, 29(24), p.5922. https://doi.org/10.3390/molecules29245922.
Chowdhuri I, and Pal SC. (2025). Challenges and potential pathways towards sustainable agriculture crop production: A systematic review to achieve sustainable development goals (SDGs). Soil & Tillage Research, 248, p.106442. https://doi.org/10.1016/j.still.2024.106442.
Colombo F, Pesenti M, Araniti F, Pilu SR, & Nocito FF. (2024). An Integrated and multi-stakeholder approach for sustainable phosphorus management in agriculture. Agronomy, 14(4), p.780. https://doi.org/10.3390/agronomy14040780.
de Lima JD, de Souza AJ, Nunes ALP, Rivadavea WR, Zaro GC, & da Silva GJ. (2024). Expanding agricultural potential through biological nitrogen fixation: Recent advances and diversity of diazotrophic bacteria. Australian Journal of Crop Science, 18(6), pp. 324-333. https://doi.org/10.21475/ajcs.24.18.06.p4104.
Elbasiouny H, Elbehiry F, El-Ramady H, & Brevik EC. (2020). Phosphorus availability and potential environmental risk assessment in alkaline soils. Agriculture, 10(5), p.172. https://doi.org/10.3390/agriculture10050172.
El-Khouly N, Fergani M, El-temsah M, El-Saady K, & Shahin M. (2024). Impact of integration between soil application of phosphorus and foliar spraying of nano potassium, iron, and boron on the productivity and quality of peanuts. Egyptian Journal of Botany, 64(3), pp.130-147. https://doi.org 10.21608/ejbo.2024.213993.2356
Estefan G, Sommer R, & Ryan J. (2013). Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region.
Fierer N, Allen AS, Schimel JP, & Holden PA. (2003). Controls on microbial CO2 production: a comparison of surface and subsurface soil horizons. Global Change Biology, 9(9), pp.1322-1332. https://doi.org/10.1046/j.1365-2486.2003.00663.x.
Franko U, & Merbach I. (2017). Modelling soil organic matter dynamics on a bare fallow Chernozem soil in Central Germany. Geoderma, 303, pp.93-98. https://doi.org/10.1016/j.geoderma.2017.05.013.
Gee GW, & Bauder JW. (1986). Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis: Part 1. Agronomy Handbook, No 9, American Society of Agronomy and Soil Science Society of America, Madison, WI, pp. 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15.
Glick BR. (2012). Plant growth‐promoting bacteria: mechanisms and applications. Scientifica, 2012(1), p.963401. https://doi.org/10.6064/2012/963401.
Gonçalves JO, Leones AR, de Farias BS, da Silva MD, Jaeschke DP, Fernandes SS, Ribeiro AC, Cadaval Jr TRS, & Pinto LADA. (2025). A Comprehensive review of agricultural residue-derived bioadsorbents for emerging contaminant removal. Water, 17(14), p.2141. https://doi.org/10.3390/w17142141.
Gupta BK. (2007). Soil, plant, water and fertilizer analysis. Agrobios (India). https://doi.org/10.1007/BF02841332.
Illmer P, & Schinner F. (1992). Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biology & Biochemistry, 24, p. 389–395. https://doi.org/10.1016/0038-0717(92)90199-8.
Imran A. (2025). Carbon cultivation for sustainable agriculture, ecosystem resilience, and climate change mitigation. Communications in Soil Science & Plant Analysis, 56(9), pp.1430-1456. https://doi.org/10.1080/00103624.2025.2453996.
Itelima JU, Bang WJ, Onyimba IA, & Oj E. (2018). A review: biofertilizer, a key player in enhancing soil fertility and crop productivity. Journal of Microbiology and Biotechnolog, 2(1), pp.22-28. http://creativecommons.org/licenses/by-nc/4.0.
Jahan N, Mahmud U, & Khan MZ. (2025). Sustainable plant-soil phosphorus management in agricultural systems: challenges, environmental impacts & innovative solutions. Discover Soil, 2(1), pp.1-8. https://doi.org/10.1007/s44378-025-00039-2.
Jenkinson DS, & Ladd JN. (2021). Microbial biomass in soil: measurement and turnover. In Soil biochemistry, pp. 415-472). CRC Press. https://doi.org/10.1201/9781003064763.
Jorquera MA, Shaharoona B, Nadeem SM, de la Luz Mora M, & Crowley DE. (2012). Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata). Microbial ecology, 64(4), pp.1008-1017. https://doi.org/10.1007/s00248-012-0071-5.
Khalili N, Ghorbani Nasrabadi R, Baranimotlagh M, &
Khodadadi R. (2023). The effect of humic acid and
inoculation of actinomycetes isolates on phosphorus solubilization in laboratory conditions and
phosphorus content in maize (
Zea mays).
Journal of Soil Management & Sustainable Production, 13(2), pp.75-94.
https://doi.org/10.22069/ejsms.2023.21253.2096. (In Persian).
Khan MS, Zaidi A, & Wani PA. (2009). Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Sustainable agriculture, pp.551-570. https://doi.org/10.1007/978-90-481-2666-8_34.
Kumar V, Behl RK, & Narula N. (2001). Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiological research, 156(1), pp.87-93. https://doi.org/10.1078/0944-5013-00081.
Kuo SM, & Morgan DR. (1996). Active noise control systems. (Vol. 4). Wiley, New York. http://dx.doi.org/10.1109/5.763310.
Kuzyakov Y. (2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42(9), pp.1363-1371. https://doi.org/10.1016/j.soilbio.2010.04.003.
Lamuka AP, Retnowati Y, Katili AS, Kandowangko NY, & Uno WD. (2025). Phosphate solubilizing actinomycetes in the rhizosphere of corn (Zea mays) in Gorontalo. MIKHAYLA: Journal of Advanced Research, 2(1), pp.1-10. https://doi.org/10.61579/mikhayla.v2i1.282.
Lindsay WL, & Norvell W. (1978). Development of a DTPA soil test for zinc, iron, manganese, ans copper. Soil Science Society of America journal, 42(3), pp.421-428. https://doi.org/10.2136/sssaj1978.03615995004200030009x.
Li L, Hu Z, Tan G, Fan J, Chen Y, Xiao Y, Wu S, Zhi Q, Liu T, Yin H, &Tang Q. (2023). Enhancing plant growth in biofertilizer-amended soil through nitrogen-transforming microbial communities. Frontiers in Plant Science, 14, p.1259853. https://doi.org/10.3389/fpls.2023.1259853.
Loeppert RH, & Suarez DL. (1996). Carbonate and gypsum. Methods of soil analysis: Part 3 chemical methods, 5, pp.437-474. https://doi.org/10.2136/sssabookser5.3.c15.
Martínez-Hidalgo P, & Hirsch AM. (2017). The nodule microbiome: N2-fixing rhizobia do not live alone. Phytobiomes Journal, 1(2), pp.70-82. https://doi.org/10.1094/PBIOMES-12-16-0019-RVW.
Mc Lean EO, & Watson ME. (1985). Soil measurements of plant‐available potassium. Potassium in agriculture, pp.277-308. https://doi.org/10.2134/1985.potassium.c10.
Mitra D, Mondal R, Khoshru B, Senapati A, Radha TK, Mahakur B, Uniyal N, Myo EM, Boutaj H, Sierra BEG, & Panneerselvam P. (2022). Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere, 32(1), pp.149-170. https://doi.org/10.1016/S1002-0160(21)60042-5.
Nautiyal CS. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), pp.265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.
Noorizadeh S, Golmaohamadi M, Farhangi MB, Banihashemian SN, Mahdavi V, Atighi MR, & Unc A. (2025). Antibacterial properties and plant growth-promoting effect of actinobacteria obtained from citrus orchards in Iran. Journal of Plant Pathology, https://doi.org/10.1007/s42161-025-02043-5.
Olsen SR. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture.
Page AL, Miller RH, & Keeney DR. (1982). Methods of Soil Analysis. Part 2. Chemical & Microbiological Properties. American Society of Agronomy, Soil Science Society of America, 1159. https://doi.org/10.2134/agronmonogr9.2.2ed.c33.
Pahalvi HN, Rafiya L, Rashid S, Nisar B & Kamili AN. (2021). Chemical fertilizers and their impact on soil health. In Microbiota & biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs (pp. 1-20). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-61010-4_1.
Park J, Guan W, & Yu G. (2025). Smart Hydrogels for Sustainable Agriculture. EcoMat, 7(4), p.e70011. https://doi.org/10.1002/eom2.70011.
Prabhu N, Borkar S, & Garg S. (2019). Phosphate solubilization by microorganisms: overview, mechanisms, applications, and advances. Advances in Biological Science Research, pp. 161-176. https://doi.org/10.1016/B978-0-12-817497-5.00011-2.
Qin YM, Tu YH, Li T, Ni Y, Wang RF, & Wang H. (2025). Deep Learning for sustainable agriculture: A systematic review on applications in lettuce cultivation. Sustainability, 17(7), p.3190. https://doi.org/10.3390/su17073190.
Rajput MS, Naresh Kumar G, & Rajkumar S. (2013). Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Archives of microbiology, 195(2), pp.81-88. https://doi.org/10.1007/s00203-012-0850-x.
Ramesh A, Sharma SK, Sharma MP, Yadav N, & Joshi OP. (2014). Plant growth-promoting traits in Enterobacter cloacae subsp. Dissolvent MDSR9 isolated from soybean rhizosphere and its impact on the growth and nutrition of soybean and wheat upon inoculation. Agricultural Research, 3(1), pp.53-66. https://doi.org/10.1007/s40003-014-0100-3.
Rawat P, Das S, Shankhdhar D, & Shankhdhar SC. (2021). Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science & Plant Nutrition, 21(1), pp.49–68. https://doi.org/10.1007/s42729-020-00342-7.
Richardson AE, & Simpson RJ. (2011). Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant physiology, 156(3), pp.989-996. https://doi.org/10.1104/pp.111.175448.
Richardson AE, Barea JM, McNeill AM, & Prigent-Combaret C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321(1-2), pp. 305–339. https://doi.org/10.1007/s11104-009-9895-2.
Robertson GP. (2015). A sustainable agriculture? Daedalus, 144(4), pp.76-89. https://doi.org/10.1162/DAED_a_00355.
Rowell DI. (1994). Soil Science: Methods and Applications. Longman Group. https://doi.org/10.4324/9781315844855.
Saharan BS, & Nehra V. (2011). Plant growth promoting rhizobacteria: a critical review. International Journal of Life Science and Medical Research, 21(1), p.30. https://doi.org/ 10.12691/wjar-10-2-2
Sáhó A, Karikás V, Ásványi B, Lakatos E, Varga L, & Greff B. (2024). Bioactive potential of actinobacteria Strains isolated from the rhizosphere of lavender, lemon balm, and oregano. Agriculture, 14(10), p.1758. https://doi.org/10.3390/agriculture14101758.
Sashidhar B, & Podile AR. (2010). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. Journal of applied microbiology, 109(1), pp.1-12. https://doi.org/10.1111/j.1365-2672.2009.04654.x.
Schikora A, & Schmidt W. (2001). Iron stress-induced changes in root epidermal cell fate are regulated independently from physiological responses to low iron availability. Plant Physiology, 125, pp.1679–1687. https://doi.org/10.1104/pp.125.4.1679.
Sharma SB, Sayyed RZ, Trivedi MH, & Gobi TA. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), p.587. https://doi.org/10.1186/2193-1801-2-587.
Sun A, Jiao XY, Chen Q, Wu AL, Zheng Y, Lin YX, He JZ, & Hu HW. (2021). Microbial communities in crop phyllosphere and root endosphere are more resistant than soil microbiota to fertilization. Soil Biology & Biochemistry, 153, p.108113. https://doi.org/10.1016/j.soilbio.2020.108113
Tan M, Feng T, Wang C, Hao X, & Yu H. (2025). Effects of microbial agents on soil improvement: A Review and Bibliometric Analysis. Agronomy, 15(5), p.1223. https://doi.org/10.3390/agronomy15051223.
Thepbandit W, & Athinuwat D. (2024). Rhizosphere microorganisms supply availability of soil nutrients and induce plant defense. Microorganisms, 12(3), p.558. https://doi.org/10.3390/microorganisms12030558.
Tolin S, De Franceschi G, Spolaore B, Frare E, Canton M, Polverino de Laureto P, & Fontana A. (2010). The oleic acid complexes of proteolytic fragments of α‐lactalbumin display apoptotic activity. The FEBS journal, 277(1), pp.163-173. https://doi.org/10.1111/j.1742-4658.2009.07466.x.
Walkley A, & Black IA. (1934). An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil science, 37(1), pp.29-38. http://dx.doi.org/10.1097/00010694-193401000-00003.
Wang X, Liu Y, Tian X, Guo J, Luan Y, & Wang D. (2025). Root exudates mediate the production of reactive oxygen species in rhizosphere soil: Formation mechanisms and ecological effects. Plants, 14(9), p.1395. https://doi.org/10.3390/plants14091395.
Whitelaw MA. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Advances in agronomy, 69, pp.99-151. https://doi.org/10.1016/S0065-2113(08)60948-7
Yu Y, Zhang M, Lin S, Wang L, Liu J, Jones G, & Huang HC. (2013). Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate. International Journal of Biological Macromolecules, 58, pp. 253-257. https://doi.org/10.1016/j.ijbiomac.2013.04.027.
Zaidi A, Khan MS, Ahemad M, Oves M, & Wani PA. (2009). Recent advances in plant growth promotion by phosphate-solubilizing microbes. Microbial strategies for crop improvement, pp.23-50. https://doi.org/10.1007/978-3-642-01979-1_2.
Zhu X, Lee SY, Yang WT, Lee SW, Baek D, Li M, & Kim DH. (2019). The Burholderia pyrrocinia purple acid phosphatase Pap9 mediates phosphate acquisition in plants. Journal of Plant Biology, 62(5), pp.342-350. https://doi.org/10.1007/s12374-019-0161-8.