Ahmed, A. A., Sayed, S., Abdoulhalik, A., Moutari, S., & Oyedele, L. (2024). Applications of machine learning to water resources management: A review of present status and future opportunities. Journal of Cleaner Production, 441, 140715.
Ahmed, A. M., Deo, R. C., Feng, Q., Ghahramani, A., Raj, N., Yin, Z., & Yang, L. (2021). Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity. Journal of Hydrology, 599, 126350.
Ahmed, Z., Gui, D., Murtaza, G., Yunfei, L., & Ali, S. (2023). An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy, 13(8), 2113.
Al Naggar, Y., Fahmy, N. M., Alkhaibari, A. M., Al-Akeel, R. K., Alharbi, H. M., Mohamed, A., ... & Alharbi, H. A. (2025). Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control. Toxics, 13(8), 681.
Amani, S., & Shafizadeh-Moghadam, H. (2023). A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural water management, 284, 108324.
Ashoka, P., Devi, B. R., Sharma, N., Behera, M., Gautam, A., Jha, A., & Sinha, G. (2024). Artificial intelligence in water management for sustainable farming: a review. Journal of Scientific Research and Reports, 30(6), 511-525.
Başağaoğlu, H., Chakraborty, D., Lago, C. D., Gutierrez, L., Şahinli, M. A., Giacomoni, M., ... & Şengör, S. S. (2022). A review on interpretable and explainable artificial intelligence in hydroclimatic applications. Water, 14(8), 1230.
Bwambale, E., Abagale, F. K., & Anornu, G. K. (2023). Data-driven modelling of soil moisture dynamics for smart irrigation scheduling. Smart Agricultural Technology, 5, 100251.
Chellaiah, C., Anbalagan, S., Swaminathan, D., Chowdhury, S., Kadhila, T., Shopati, A. K., ... & Amesho, K. T. (2024). Integrating deep learning techniques for effective river water quality monitoring and management. Journal of Environmental Management, 370, 122477.
Dehghanisanij, H., Emami, H., Emami, S., & Rezaverdinejad, V. (2022). A hybrid machine learning approach for estimating the water-use efficiency and yield in agriculture. Scientific Reports, 12(1), 6728.
Del-Coco, M., Leo, M., & Carcagnì, P. (2024). Machine learning for smart irrigation in agriculture: How far along are we?. Information, 15(6), 306.
Duan, Y., Akula, S., Kumar, S., Lee, W., & Khajehei, S. (2023). A hybrid physics–AI model to improve hydrological forecasts. Artificial Intelligence for the Earth Systems, 2(1), e220023.
Eggimann, S., Mutzner, L., Wani, O., Schneider, M. Y., Spuhler, D., Moy de Vitry, M., ... & Maurer, M. (2017). The potential of knowing more: A review of data-driven urban water management. Environmental science & technology, 51(5), 2538-2553.
El Bilali, A., Taleb, A., & Brouziyne, Y. (2021). Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agricultural Water Management, 245, 106625.
Farfán-Durán, J. F., & Cea, L. (2024). Streamflow forecasting with deep learning models: A side-by-side comparison in Northwest Spain. Earth Science Informatics, 17(6), 5289-5315.
Fu, X., Jiang, J., Wu, X., Huang, L., Han, R., Li, K., ... & Wang, Z. (2024). Deep learning in water protection of resources, environment, and ecology: Achievement and challenges. Environmental Science and Pollution Research, 31(10), 14503-14536.
Gerten, D., Lucht, W., Ostberg, S., Heinke, J., Kowarsch, M., Kreft, H., ... & Schellnhuber, H. J. (2013). Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 8(3), 034032.
Ghobadi, F., & Kang, D. (2023). Application of machine learning in water resources management: a systematic literature review. Water, 15(4), 620.
Goap, A., Sharma, D., Shukla, A. K., & Krishna, C. R. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and electronics in agriculture, 155, 41-49.
Hajirad, I. (2025). Optimizing pulsed and continuous drip irrigation strategies to enhance yield and water productivity of silage maize in semi-arid regions. Cogent Food & Agriculture, 11(1), 2583753.
Hammouch, H., El-Yacoubi, M., Qin, H., & Berbia, H. (2024). A systematic review and meta-analysis of intelligent irrigation systems. IEEE Access.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Hoover, D. L., Abendroth, L. J., Browning, D. M., Saha, A., Snyder, K., Wagle, P., ... & Scott, R. L. (2023). Indicators of water use efficiency across diverse agroecosystems and spatiotemporal scales. Science of the Total Environment, 864, 160992.
Howell, T. A. (2001). Enhancing water use efficiency in irrigated agriculture. Agronomy journal, 93(2), 281-289.
Huang, Q., Du, Y., & Yi, C. (2025). Assessing the role of artificial intelligence in improving urban climate resilience: theoretical framework based on technological innovation systems. Journal of Asian Public Policy, 1-23.
Jaiswal, N., Kumar, T. V., & Shukla, C. (2025). Smart drip irrigation systems using IoT: a review of architectures, machine learning models, and emerging trends. Discover Agriculture, 3(1), 253.
Janani, M., & Jebakumar, R. (2019). A study on smart irrigation using machine learning. Cell & Cellular Life Sciences Journal, 4(1), 1-8.
Jiang, Y., Li, C., Sun, L., Guo, D., Zhang, Y., & Wang, W. (2021). A deep learning algorithm for multi-source data fusion to predict water quality of urban sewer networks. Journal of Cleaner Production, 318, 128533.
Kazemi Garajeh, M., Akbari, R., Aghaei Chaleshtori, S., Shenavaei Abbasi, M., Tramutoli, V., Lim, S., & Sadeqi, A. (2024). A comprehensive assessment of climate change and anthropogenic effects on surface Water resources in the Lake Urmia Basin, Iran. Remote Sensing, 16(11), 1960.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.
Lee, D. Y., Lee, D. S., Cha, Y., Min, J. H., & Park, Y. S. (2023). Data-driven models for predicting community changes in freshwater ecosystems: a review. Ecological Informatics, 77, 102163.
Li, X., Li, J., & Yang, K. (2022). Feature importance analysis and machine learning applications in water resources management: Opportunities and challenges. Journal of Hydrology, 609, 127731.
Li, X., Xue, F., Ding, J., Xu, T., Song, L., Pang, Z., ... & Zhang, Y. (2024). A hybrid model coupling physical constraints and machine learning to estimate daily evapotranspiration in the heihe River Basin. Remote Sensing, 16(12), 2143.
Manny, L. (2023). Socio-technical challenges towards data-driven and integrated urban water management: A socio-technical network approach. Sustainable Cities and Society, 90, 104360.
Manny, L. (2023). Socio-technical challenges towards data-driven and integrated urban water management: A socio-technical network approach. Sustainable Cities and Society, 90, 104360.
Mosavi, A., Ozturk, P., & Chau, K. W. (2018). Flood prediction using machine learning models: Literature review. Water, 10(11), 1536.
Mosavi, A., Ozturk, P., & Chau, K.-W. (2019). Flood prediction using machine learning models: Literature review. Water, 11(12), 2510.
Otamendi, U., Maiza, M., Olaizola, I. G., Sierra, B., Florez, M., & Quartulli, M. (2024). Integrated water resource management in the Segura Hydrographic Basin: An artificial intelligence approach. Journal of Environmental Management, 370, 122526.
Parra-López, C., Abdallah, S. B., Garcia-Garcia, G., Hassoun, A., Trollman, H., Jagtap, S., ... & Carmona-Torres, C. (2025). Digital technologies for water use and management in agriculture: Recent applications and future outlook. Agricultural Water Management, 309, 109347.
Sami, M., Khan, S. Q., Khurram, M., Farooq, M. U., Anjum, R., Aziz, S., ... & Sadak, F. (2022). A deep learning-based sensor modeling for smart irrigation system. Agronomy, 12(1), 212.
Sami, S., Khan, A., & Ahmad, M. (2022). Deep learning-based virtual sensing for improving smart irrigation system reliability. Computers and Electronics in Agriculture, 198, 107012.
Sayari, S., Mahdavi-Meymand, A., & Zounemat-Kermani, M. (2021). Irrigation water infiltration modeling using machine learning. Computers and Electronics in Agriculture, 180, 105921.
Shah, W., Chen, J., Ullah, I., & Shah, M. H. (2024). Application of RNN-LSTM in predicting drought patterns in pakistan: A pathway to sustainable water resource management. Water, 16(11), 1492.
Sharma, A., et al. (2023). AI-driven selection of drought-tolerant and water-efficient crop varieties. Plant Science, 328, 111537.
Sharma, N., Raman, H., Wheeler, D., Kalenahalli, Y., & Sharma, R. (2023). Data-driven approaches to improve water-use efficiency and drought resistance in crop plants. Plant Science, 336, 111852.
Shen, C., Wang, H., & Chen, Y. (2021). Limitations and interpretability challenges of classical machine learning models in hydrological predictions. Environmental Modelling & Software, 144, 105137.
Shen, C., Wang, L., & Li, X. (2021). Hybrid deep learning models for simulating climate change impacts on agricultural water use efficiency.
Shortridge, J. E., Guikema, S. D., & Zaitchik, B. F. (2016). Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrology and Earth System Sciences, 20(7), 2611-2628.
Sinclair, T. R., & Rufty, T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security, 1(2), 94-98.
Slater, L., Blougouras, G., Deng, L., Deng, Q., Ford, E., Hoek van Dijke, A., ... & Zhang, B. (2025). Challenges and opportunities of ML and explainable AI in large-sample hydrology. Philosophical Transactions A, 383(2302), 20240287.
Tipon Tanchangya, A. R., Rahman, J., & Ridwan, M. (2024). A review of deep learning applications for sustainable water resource management. Global sustainability research, 3(4), 48-73.
Vaquet, V., Hinder, F., Artelt, A., Ashraf, I., Strotherm, J., Vaquet, J., ... & Hammer, B. (2024, September). Challenges, methods, data–a survey of machine learning in water distribution networks. In International Conference on Artificial Neural Networks (pp. 155-170). Cham: Springer Nature Switzerland.
Vij, A., Vijendra, S., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and machine learning approaches for automation of farm irrigation system. Procedia Computer Science, 167, 1250-1257.
Wang, X., Feng, Y., Cui, Y., & Guo, B. (2023). Spatiotemporal Variation of Vegetation Water Use Efficiency and Its Response to Extreme Climate in Northwestern Sichuan Plateau. Sustainability, 15(15), 11786.
Wang, Z., Liu, Z., Yuan, M., Yin, W., Zhang, C., Zhang, Z., & Hu, X. (2025). A machine learning-based irrigation prediction model for cherry tomatoes in greenhouses: Leveraging optimal growth data for precision irrigation. Computers and Electronics in Agriculture, 237, 110558.
Wei, H., Xu, W., Kang, B., Eisner, R., Muleke, A., Rodriguez, D., ... & Harrison, M. T. (2024). Irrigation with artificial intelligence: problems, premises, promises. Human-Centric Intelligent Systems, 4(2), 187-205.
Workneh, A., et al. (2025). Hybrid deep learning models for river discharge prediction. Journal of Hydrology, 632, 129220.
Workneh, H., & Jha, M. (2025). Utilizing Hybrid Deep Learning Models for Streamflow Prediction. Water, 17(13), 1913.
Younes, A., Abou Elassad, Z. E., El Meslouhi, O., Abou Elassad, D. E., & Majid, E. D. A. (2024). The application of machine learning techniques for smart irrigation systems: A systematic literature review. Smart Agricultural Technology, 7, 100425.
Zeynoddin, M., Gumiere, S. J., & Bonakdari, H. (2023). Enhancing water use efficiency in precision irrigation: data-driven approaches for addressing data gaps in time series. Frontiers in Water, 5, 1237592.
Zhang, J., Ren, W., An, P., Pan, Z., Wang, L., Dong, Z., ... & Tian, H. (2015). Responses of crop water use efficiency to climate change and agronomic measures in the semiarid area of northern China. PloS one, 10(9), e0137409.
Zhang, L., Dawes, W. R., & Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3), 701-708.
Zhao, H., Di, L., Guo, L., Zhang, C., & Lin, L. (2023). An automated data-driven irrigation scheduling approach using model simulated soil moisture and evapotranspiration. Sustainability, 15(17), 12908.
Zhao, L., et al. (2025). Optimizing irrigation scheduling using machine learning and multi-source data. Agricultural Systems, 224, 103123.
Zhao, W., Duan, L., Ma, B., Meng, X., Ren, L., Ye, D., & Rui, S. (2025). Applications of Optimization Methods in Automotive and Agricultural Engineering: A Review. Mathematics, 13(18), 3018.
Zhao, X., Wang, H., Bai, M., Xu, Y., Dong, S., Rao, H., & Ming, W. (2024). A comprehensive review of methods for hydrological forecasting based on deep learning. Water, 16(10), 1407.
Zhao, X., Wang, H., Bai, M., Xu, Y., Dong, S., Rao, H., & Ming, W. (2024). A comprehensive review of methods for hydrological forecasting based on deep learning. Water, 16(10), 1407.
Zhu, F., Zhu, O., Han, M., Liu, W., Guo, X., Hou, T., ... & Zhong, P. A. (2025). A hybrid process-data driven framework for real-time hydrological forecasting with interpretable deep learning. Journal of Hydrology, 134082.