Abdullah, S. L. S., Hambali, H., & Jamil, N. (2012). Segmentation of natural images using an improved thresholding-based technique. Procedia Engineering, 41(Iris), 938–944. https://doi.org/10.1016/j.proeng.2012.07.266.
Agapiou, A. (2020). Vegetation extraction using visible-bands from openly licensed unmanned aerial vehicle imagery. Drones, 4(2), 1-15. https://doi.org/10.3390/drones4020027.
Azimi S, Gandhi TK. (2020). Water Stress Identification in Chickpea Images using Machine Learning. IEEE Region 10 Humanitarian Technology Conference, R10-HTC2020-December: https://doi.org/10.1109/R10-HTC49770.2020.9356973.
Biabi H, Abdanan Mehdizadeh S, Salehi Salmi M. (2019). Design and implementation of a smart system for water management of lilium flower using image processing. Computers and Electronics in Agriculture, 160:131–143. https://doi.org/10.1016/j.compag.2019.03.019.
Chandel NS, Chakraborty SK, Rajwade YA., et al. (2020). Identifying crop water stress using deep learning models. Neural Computing and Applications, 4:. https://doi.org/10.1007/s00521-020-05325-4.
Clover, G. R. G., Smith, H. G., Azam-Ali, S. N., et al. (1999). The effects of drought on sugar beet growth in isolation and in combination with beet yellows virus infection. Journal of Agricultural Science, 133(3), 251–261. https://doi.org/10.1017/S0021859699007005.
Coy, A. et al. (2016) Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs, Remote Sensing, 8(7), 21–25. doi: 10.3390/rs8070474.
Fawcett D, Panigada C, Tagliabue G., et al. (2020). Multi-Scale Evaluation of Drone-Based Multispectral Surface Reflectance and Vegetation Indices in Operational Conditions. Remote Sensing, 2020(12), 514. https://doi.org/10.3390/RS12030514.
Gašparović M, Zrinjski M, Barković Đ., et al. (2020). An automatic method for weed mapping in oat fields based on UAV imagery. Computers and Electronics in Agriculture, 173, 105385. https://doi.org/10.1016/J.COMPAG.2020.105385.
Ghosal S, Blystone D, Singh AK., et al. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America,115, 4613–4618. https://doi.org/10.1073/pnas.1716999115.
Góraj M, Wróblewski C, Ciężkowski W., et al. (2019). Free water table area monitoring on wetlands using satellite and UAV orthophotomaps – Kampinos National Park case study. Meteorology Hydrology and Water Management, 7, 23–30. https://doi.org/10.26491/MHWM/95086.
Gooyandeh, M., Mirlatifi, S. M., & Akbari, M. (2019). Estimating Leaf Area Index of a corn silage field using a Modified Commercial Digital Camera. Iranian Journal of Irrigation & Drainage, 12(6), 1396-1406. (In Persian)
Haddadi, S. R., Soltani M., & Hashemi M. (2023). Evaluation of different vegetation discriminator indices and image processing algorithms to estimate water productivity. Water Management in Agriculture 10(1), 159-174. (In Persian)
Haddadi, S. R., Soltani, M., & Hashemi, M. (2022). Comparing the accuracy of different image processing methods to estimate sugar beet canopy cover by digital camera images. Water and Irrigation Management, 12(2), 295-308. doi: 10.22059/jwim.2022.336225.954 (In Persian)
He, H. J., Zheng, C. & Sun, D. W. (2016). Image segmentation techniques. International Computer Vision Technology for Food Quality Evaluation: Second Edition. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802232-0.00002-5.
Hernández-Hernández, J. L., García-Mateos, G., González-Esquiva, J.M., et al. (2016). Optimal color space selection method for plant/soil segmentation in agriculture. Computers and Electronics in Agriculture. 122, 124-132. doi: 10.1016/j.compag.2016.01.020.
Inoue Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66, 798–810. https://doi.org/10.1080/00380768.2020.1738899.
Kalischuk M, Paret ML, Freeman JH., et al. (2019). An improved crop scouting technique incorporating unmanned aerial vehicle-assisted multispectral crop imaging into conventional scouting practice for gummy stem blight in Watermelon. Plant Disease, 103, 1642–1650. https://doi.org/10.1094/PDIS-08-18-1373-RE/ASSET/IMAGES/LARGE/PDIS-08-18-1373-RE_F6.JPEG.
Latifoltojar, S., Jafari, A., Nassiri, S. M., et al. (2014). Yield estimation of sugar beet based on plant canopy using machine vision methods. Journal of Agricultural Machinery, 4(2), 275–284. (In Persian)
Lee, K. J. & Lee, B. W. (2011). Estimating canopy cover from color digital camera image of rice field, Journal of Crop Science and Biotechnology, 14(2), 151–155. doi: 10.1007/s12892-011-0029-z.
Liu, Y., Hatou, K., Aihara, T., et al (2021). A robust vegetation index based on different uav rgb images to estimate SPAD values of naked barley leaves. Remote Sensing, 13(4), 1-21. https://doi.org/10.3390/rs13040686.
Louhaichi, M, Borman, M. M. & Johnson, D. E. (2001). Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto International, 16(1), 65-70, doi: 10.1080/10106040108542184.
Luna I, Lobo A. (2016). Mapping crop planting quality in sugarcane from UAV imagery: A pilot study in Nicaragua. Remote Sensing, 8, 1–18. https://doi.org/10.3390/rs8060500.
Melville B, Lucieer A, Aryal J. (2019). Classification of Lowland Native Grassland Communities Using Hyperspectral Unmanned Aircraft System (UAS) Imagery in the Tasmanian Midlands. Drones, 3, 5. https://doi.org/10.3390/DRONES3010005.
Miraki, M., Sohrabi, H., & Fatehi, P. (2022). Citrus trees identification and trees stress detection based on spectral data derived from UAVs. Research in Horticultural Sciences, 1(1), 27-40. doi: 10.22092/rhsj.2022.127815. (In Persian)
Negash L, Kim HY, Choi HL. (2019). Emerging UAV Applications in Agriculture. 2019 7th International Conference on Robot Intelligence Technology and Applications, RiTA 2019, 254–257. https://doi.org/10.1109/RITAPP.2019.8932853.
Nguyen LQ, Bui LK, Cao CX., et al. (2024). Application of artificial neural networks and UAV-based air quality monitoring sensors for simulating dust emission in quarries. Applications of Artificial Intelligence in Mining, Geotechnical and Geoengineering, 7–22. https://doi.org/10.1016/B978-0-443-18764-3.00012-6.
Niu, Y., Han, W., Zhang, H., et al. (2021). Estimating fractional vegetation cover of maize under water stress from UAV multispectral imagery using machine learning algorithms. Computers and Electronics in Agriculture, 189(August), 106414. https://doi.org/10.1016/j.compag.2021.106414.
Orak, H., Abdanan Mehdizeh, S., & Sadi, M. (2018). Predicting sugar beet performance by online image processing. Journal of Sugar Beet, 34(2), 181–191. https://doi.org/10.22092/jsb.2019.120670.1178 (In Persian)
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE Transaction on Systems, Man and Cybernetics, 20(1), 62–66.
Parker, J. R. )2011(. Algorithms for image prcessing and computer vision. International Journal of Chemical Information and Modeling. 53(9).
Possoch, M., Bieker, S., Hoffmeister, D., et al. (2016). Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 991–998. https://doi.org/10.5194/ isprsarchives-XLI-B1-991-2016.
Riehle, D., Reiser, D., & Griepentrog, H. W. (2020). Robust index-based semantic plant/background segmentation for RGB- images. Computers and Electronics in Agriculture, 169(December 2019), 105201. https://doi.org/10.1016/j.compag.2019.105201.
Richards, J.A. Remote Sensing Digital Image Analysis Berlin. (1999). Springer-Verlag, 240.
Saberioon, M. M., Gholizadeh, A. (2016). Novel approach for estimating nitrogen content in paddy fields using low altitude remote sensing system. International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 41, 1011–1015. https://doi.org/ 10.5194/isprsarchives-XLI-B1-1011-2016.
Soltani, M. Estimating maize canopy cover percent by means of image processing algorithms. Water and Irrigation Management, 2023; (): -. doi: 10.22059/jwim.2023.364331.1098.
Su J, Coombes M, Liu C., et al. (2018). Wheat Drought Assessment by Remote Sensing Imagery Using Unmanned Aerial Vehicle. Chinese Control Conference, CCC, 2018(July):10340–10344. https://doi.org/10.23919/ChiCC.2018.8484005.
Wakamori K, Mizuno R, Nakanishi G., et al. (2020). Multimodal neural network with clustering-based drop for estimating plant water stress. Computers and Electronics in Agriculture, 168, 105118. https://doi.org/10.1016/j.compag.2019.105118.
Wan, L., Li, Y., Cen, H., et al. (2018). Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091484.
Wenhua M, Yiming W, Yueqing W. (2003). Real-time Detection of Between-row Weeds Using Machine Vision. 2003 ASAE Annual International Meeting, https://doi.org/10.13031/2013.15381).
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., et al. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1): 259–269.
Yang, B.H., Wang, M.X., Sha, Z.X., et al. (2019). Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors (Basel), 19(20). https://doi.org/ 10.3390/s19204416.
Zhang X, Han L, Dong Y., et al. (2019). A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sensing, 11, 1554. https://doi.org/10.3390/RS11131554.
Zhuang S, Wang P, Jiang B., et al. (2017). Early detection of water stress in maize based on digital images. Computers and Electronics in Agriculture, 140, 461–468. https://doi.org/10.1016/j.compag.2017.06.022.