Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health.
Frontiers in Agronomy,
4, 848621.
https://doi.org/10.3389/fagro.2022.848621
Capasso, S., Chianese, S., Musmarra, D., & Iovino, P. (2020). Macromolecular structure of a commercial humic acid sample. Environments, 7(4), 32.
Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504, 457-467.
https://doi.org/10.1016/j.jcis.2017.05.078
Chen, Y., Senesi, N., & Schnitzer, M. (1978). Chemical and physical characteristics of humic and fulvic acids extracted from soils of the Mediterranean region.
Geoderma,
20(2), 87-104.
https://doi.org/10.1016/0016-7061(78)90037-X
Dane, J. H., & Topp, C. G. (Eds.). (2020). Methods of soil analysis, Part 4: Physical methods (Vol. 20). John Wiley & Sons.
Davey, M. P., Berg, B., Emmett, B. A., & Rowland, P. (2007). Decomposition of oak leaf litter is related to initial litter Mn concentrations.
Botany,
85(1), 16-24
. https://doi.org/10.1139/b06-150
de Castro, T. A. V. T., Berbara, R. L. L., Tavares, O. C. H., da Graca Mello, D. F., Pereira, E. G., de Souza, C. D. C. B., ... & García, A. C. (2021). Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants.
Plant Physiology and Biochemistry,
162, 171-184.
https://doi.org/10.1016/j.plaphy.2021.02.043
Elgala, A. M., El‐Damaty, A. H., & Abdel‐Latif, I. (1976). Comparative ability of natural humus materials and synthetic chelates in extracting Fe, Mn, Zn, and Ca from soils.
Zeitschrift für Pflanzenernährung und Bodenkunde,
139(3), 301-307.
https://doi.org/10.1002/jpln.19761390305
Eshwar, M., Srilatha, M., Rekha, K. B., & Sharma, S. H. K. (2017). Complexation behavior of humic and fulvic acids with metal ions and their assessment by stability constants. International Journal of Pure & Applied Bioscience, 5(6), 899-907.
Gan, D., Kotob, S. I., & Walia, D. S. (2007). EVALUATION OF A SPECTROPHOTOMETRIC METHOD FOR PRACTICAL AND COST EFFECTIVE QUANTIFICATION OF FULVIC ACID. Annals of Environmental Science.
Harmsen, K., & Vlek, P. L. G. (1985). The chemistry of micronutrients in soil. In Micronutrients in tropical food crop production (pp. 1-42). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-5055-9_1
Hartz, T. K. (2007). Evaluation of humic substances used in commercial fertilizer formulation. Final Report, Frep Project, 07-0174.
Janoš, P., Vávrová, J., Herzogová, L., & Pilařová, V. (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study.
Geoderma,
159(3-4), 335-341.
https://doi.org/10.1016/j.geoderma.2010.08.009
Keiluweit, M., Nico, P., Harmon, M. E., Mao, J., Pett-Ridge, J., & Kleber, M. (2015). Long-term litter decomposition controlled by manganese redox cycling.
Proceedings of the National Academy of Sciences,
112(38), E5253-E5260.
https://doi.org/10.1073/pnas.1508945112
Khattak, R. A., & Page, A. L. (2017). Mechanism of manganese adsorption on soil constituents. In Biogeochemistry of trace metals (pp. 395-412). CRC Press.
Khoshru, B., Mitra, D., Nosratabad, A. F., Reyhanitabar, A., Mandal, L., Farda, B., ... & Mohapatra, P. K. D. (2023). Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security.
Bacteria,
2(3), 129-141.
https://doi.org/10.3390/bacteria2030010
Kumar, D., Patel, K. P., Ramani, V. P., Shukla, A. K., & Meena, R. S. (2020). Management of micronutrients in soil for the nutritional security.
Nutrient Dynamics for Sustainable Crop Production, 103-134.
https://doi.org/10.1007/978-981-13-8660-2_4
Lamar, R. T., & Monda, H. (2022). Quantification of Humic and Fulvic Acids in Humate Ores, DOC, Humified Materials and Humic Substance-Containing Commercial Products. JoVE (Journal of Visualized Experiments), (181), e61233. https://doi.org/
10.3791/61233
Li, K., Shahab, A., Li, J., Huang, H., Sun, X., You, S., ... & Xiao, H. (2023). Compost-derived humic and fulvic acid coupling with Shewanella oneidensis MR-1 for the bioreduction of Cr (VI). Journal of Environmental Management, 345, 118596.
https://doi.org/10.1016/j.jenvman.2023.118596
Li, H., Santos, F., Butler, K., & Herndon, E. (2021). A critical review on the multiple roles of manganese in stabilizing and destabilizing soil organic matter.
Environmental science & technology,
55(18), 12136-12152.
https://doi.org/10.1021/acs.est.1c00299
Mohiuddin, M., Irshad, M., Sher, S., Hayat, F., Ashraf, A., Masood, S., ... & Waseem, M. (2022). Relationship of selected soil properties with the micronutrients in salt-affected soils. Land, 11(6), 845.
https://doi.org/10.3390/land11060845
Muscolo, A., Sidari, M., & Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings.
Journal of Geochemical Exploration,
129, 57-63.
https://doi.org/10.1016/j.gexplo.2012.10.012
Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters.
Molecules,
26(8), 2256.
https://doi.org/10.3390/molecules26082256
Rashid, M. A., & King, L. H. (1970). Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments.
Geochimica et Cosmochimica Acta,
34(2), 193-201.
https://doi.org/10.1016/0016-7037(70)90006-2
Rutkowska, B., Szulc, W., Sosulski, T., & Stępień, W. (2014). Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications.
Sarlaki, E., Paghaleh, A. S., Kianmehr, M. H., & Vakilian, K. A. (2020). Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite. Chem. Chem. Technol, 14(3), 353-361. https://doi.org/10.23939/chcht14.03.353
Shakeri, S., & Saffari, M. (2020). The status of chemical forms of iron and manganese in various orders of calcareous soils and their relationship with some physicochemical and mineralogical properties. Communications in Soil Science and Plant Analysis, 51(15), 2054-2068. https://doi.org/10.1080/00103624.2020.1820026
Shuzhuan, W. A. N. G., Xiaorong, W. E. I., & Mingde, H. A. O. (2016). Dynamics and availability of different pools of manganese in semiarid soils as affected by cropping system and fertilization.
Pedosphere,
26(3), 351-361.
https://doi.org/10.1016/S1002-0160(15)60048-0
Singh, M., Sarkar, B., Hussain, S., Ok, Y. S., Bolan, N. S., & Churchman, G. J. (2017). Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon.
Environmental geochemistry and health,
39, 1335-1350.
https://doi.org/10.1007/s10653-017-9939-0
Sparks, D. L. (1996). Methods of soil analysis, part 3. Published by the chemical methods. Soil Science Society of America. Inc, Madison. Sparks, D. L. (1996). Methods of soil analysis, part 3. Published by the chemical methods. Soil Science Society of America. Inc, Madison.
Sparks, D. L., Singh, B., & Siebecker, M. G. (2022). Environmental soil chemistry. Elsevier.
Sposito, G. (2016). The chemistry of soils. Oxford university press.
Türkmen, C., & Sungur, A. (2014). Influence of humic acid on availability of zn, Cu, mn, fe in soils. Asian Journal of Chemistry, 26(13), 3977.
Ussiri, D. A., & Johnson, C. E. (2003). Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods.
Geoderma,
111(1-2), 123-149.
https://doi.org/10.1016/S0016-7061(02)00257-4
Verrillo, M., Salzano, M., Savy, D., Di Meo, V., Valentini, M., Cozzolino, V., & Piccolo, A. (2022). Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses.
Chemical and Biological Technologies in Agriculture,
9(1), 28.
https://doi.org/10.1186/s40538-022-00291-6
Wandansari, N. R., Suntari, R., & Kurniawan, S. (2023). The role of humic acid from various composts in improving degraded soil fertility and maize yield.
Journal of Degraded & Mining Lands Management,
10(2).
https://doi.org/10.15243/jdmlm.2023.102.4245
Wang, M., Zhao, Z., Li, Y., Liang, S., Meng, Y., Ren, T., ... & Zhang, Y. (2022). Control the greenhouse gas emission via mediating the dissimilatory iron reduction: Fulvic acid inhibit secondary mineralization of ferrihydrite. Water Research, 218, 118501.
https://doi.org/10.1016/j.watres.2022.118501
Wang, X., Wang, Q., Zhang, D., Liu, J., Fang, W., Li, Y., ... & Yan, D. (2024). Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield.
Science of The Total Environment, 170882.
https://doi.org/10.1016/j.scitotenv.2024.170882
Welch, R. M., & Graham, R. D. (2005). Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops.
Journal of Trace Elements in Medicine and Biology,
18(4), 299-307.
https://doi.org/10.1016/j.jtemb.2005.03.001
Whalen, E. D., Smith, R. G., Grandy, A. S., & Frey, S. D. (2018). Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition.
Soil Biology and Biochemistry,
127, 252-263.
https://doi.org/10.1016/j.soilbio.2018.09.025
Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants.
Frontiers in Plant Science,
10, 452874.
https://doi.org/10.3389/fpls.2019.00675