Ain, Q., Shafiq, M., Capareda, S. C., and Bareen, F. (2021). Effect of different temperatures on the properties of pyrolysis products of
Parthenium hysterophorus.
Journal of Saudi Chemical Societ, 25(3), 101197.
https://doi.org/10.1016/j.jscs.2021.101197
Ansari, S., Nemati, S. H., Shoor, M., and Selahvarzi, Y. (2023). Investigating the effects of biochar application on the biochemical characteristics and concentration of some nutrients under saltwater stress in rose (
Rosa hybrida).
Plant Process and Function, 12 (57), 385-402.
http://jispp.iut.ac.ir/article-1-1864-fa.html. (
In Persian).
Barrow, N. J., and Shaw, T. C. (1976). Sodium bicarbonate as an extractant for soil phosphate, II. Effect of varying the conditions of extraction on the amount of phosphate initially displaced and on the secondary adsorption.
Geoderma, 16(2), 109-123.
https://doi.org/10.1016/0016-7061(76)90034-3
Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 29, 205-207
Chen, Q., Qu, Z., Ma, G., Wang, W., Dai, J., Zhang, M., Wei, Z., and Liu, Z. (2022). Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions.
Agricultural Water Management, 263, 107-117.
https://doi.org/10.1016/j.agwat.2021.107447
Chiang, L. C., Ng, L. T., Cheng, P. W., Chiang, W., and Lin, C. C. (2005). Antiviral activities of extracts and selected pure constituents of
Ocimum basilicum.
Clinical and Experimental Pharmacology and Physiology, 32(10), 811-816.
https://doi.org/10.1111/j.1440-1681.2005.04270.x.
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D., and Julson, J. L. (2013). Effect of biochars on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 393-404
Dell’Agnola, G., Ferrari G., and Nardi, S. (1981). Antidote action of humic substances on atrazine inhibition of sulphate uptake in barley roots. Pesticide Biochemistry and Physiology, 15, 101-104.
Fatima, A., Hussain, S., Hussain, S., Ali, B., Ashraf, U., Zulfiqar, U., Aslam, Z., Al-Robai, S. A., Alzahrani, F. O., Hano, C. and El-Esawi, M. (2021). Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses.
Agronomy, 11(6),1150.
https://doi.org/10.3390/agronomy11061150
Gong, B., Wen, D., Vanden Langenberg, K., Wei, M., Yang, F., Shi, Q. and Wang, X. (2013). Comparative effects of NaCl and NaHCO3 stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves.
Scientia Horticulturae, 157, 1-12.
https://doi.org/10.1016/j.scienta.2013.03.032
Hosseinifard, M., Stefaniak, S., Ghorbani Javid, M., Soltani, E., Wojtyla, Ł., and Garnczarska, M. (2022). Contribution of exogenous proline to abiotic stresses tolerance in plants: A review.
Intenrnational Journal of Molecular Science, 23(9), 5186.
https://doi.org/10.3390/ijms23095186
Jabborova, D., Abdrakhmanov, T., Jabbarov, Z., Abdullaev, S., Azimov, A., Mohamed, I., AlHarbi, M., Abu-Elsaoud, A., and Elkelish, A. (2023). Biochar improves the growth and physiological traits of alfalfa, amaranth and maize grown under salt stress.
Peer Journal, 18, 11.
http://dx.doi.10.7717/peerj.15684
Ji, X., Tang, J., and Zhang, J. (2022). Effects of salt stress on the morphology, growth and physiological parameters of
Juglans microcarpa L.
Plants, 11,2381.
https://doi.org/10.3390/plants11182381
Jindo, K., Canellas, L. P., Albacete, A., Figueiredo, L., Frinhani Rocha, R. L., Carvalho Baia, D., Oliveira, N., Goron, T. L., and Olivares, F. L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition.
Agronomy, 10(5), 640.
https://doi.org/10.3390/agronomy10050640
Gurrieri, L., Merico, M., Trost, P., Forlani, G. and Sparla, F. (2020). Impact of drought on soluble sugars and free proline content in selected arabidopsis mutants.
Biology, 9(11),367.
https://doi.org/10.3390/biology9110367
Kamari Shahmaleki, S., Peyvast, Q., and Olfati, J. (2010). Effects of humic acid on growth characteristics and absorption of nutrient elements of lettuce. Journal of Horticultural Sciences, 24(2), 149-153.
Khan, M. B., Cui, X., Jilani, G., Tang, L., Lu, M., Cao, X., Sahito, Z.A., Hamid, Y., Hussain, B., Yang, X., and He, Z. (2022). New insight into the impact of biochar during vermi-stabilization of divergent biowastes: Literature synthesis and research pursuits.
Chemosphere, 238, 124679.
https://doi.org/10.1016/j
Klute, A. (1986). Methods of soil analysis: Part 1 and 2, Physical and chemical methods. 2nd Edition, American Society of Agronomy; Soil Science Society of America, Madison, Wis., USA. ISBN: 9780891180883, 0891180885
Kochert, G. (1978). Carbohydrate determination by the phenol sulfuric acid method. In: Hellebust, J.A., & Craigie, J.S., (Ed) Handbook of Phycological Methods, Physiological and Biochemical Methods. Cambridge University Press, Cambridge, pp.95-97
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li H., and Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of Total Environment, 763, 144-204. https://doi.org/10.1016/j.scitotenv.2020.144204.
Li, X., Liu, J., Zhang, Y. T., Lin, J., and Mu, C. (2009). Physiological responses and adaptive strategies of wheat seedlings to salt and alkali stresses.
Soil Science and Plant Nutrition, 55(5), 684-680.
https://doi.org/10.1111/j.1747-0765.2009.00408.x
Lichtenthaler, H. K., and Wellburn, A. R. (1983). Determination of total carotenoids and chlorophyll a and b of leaf extract in different solvents.
Biochemical Society Transactions, 11, 591–592.
https://doi.org/10.1042/bst0110591
Ma, C., Yuan, S., Xie, B., Li, Q., Wang, Q., and Shao, M. (2022). IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants.
Intenrnational Journal of Molecular Science, 26, 23, 14817.
http://dx.doi.10.3390/ijms232314817
Machado, R. M. A., and Serralheiro, R. P. (2017). Soil Salinity: Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization.
Horticulturae, 3(2), 30.
https://doi.org/10.3390/horticulturae3020030
Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A. and Samant, J. S. )2011(. A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1(6), 1192-1216
Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E. and Davamani, V. (2023). A review on biochar’s effect on soil properties and crop growth.
Front Energy Research, 11,1092637.
http://dx.doi.org/10.3389/fenrg.2023.1092637
Rasouli-Sadaghiani, M. H., Vahedi R. and Barin, M. (2018). Effect of pruning waste biochar and compost a microbial inoculation on phosphorus availability. Journal of Water and Soil, 32(4), 709-722.
Rawat, J., Saxena, J., and Sanwal, P. (2019).
Biochar: A sustainable approach for improving plant growth and soil properties. In: Biochar, an imperative amendment for soil and the environment.
http://dx.doi.org/10.5772/intechopen.82151
Ritchie, S. W., Nguyan, H. T. and Holaday, A. S. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance.
Crop Science, 30, 105-111.
http://dx.doi.org/10.2135/cropsci1990.
Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J. A., Hilal, M., and Prado, F. E. (2019). Soluble sugars: Metabolism, sensing and abiotic stress: A complex network in the life of plants.
Plant Signaling & Behavior, 4, 388–393.
https://doi.org/10.4161/psb.4.5.8294
Sayarer, M., Aytaç, Z., and Kürkçüoğlu, M. (2023). The effect of irrigation and humic acid on the plant yield and quality of sweet basil (Ocimum basilicum L.) under semi-arid ecological conditions. Plants, 12, 1522. https://doi.org/10.3390/plants12071522
Sharifi Asl, R., Jasemi Manesh, M., and Mirzaie Haydari, M. (2020). The effect of humic acid on growth, yield, and some physiological parameters of wheat under salinity stress. Journal of Plant Environmental Physiology, 15(57), 10-22. (In Persian).
Silva, T., Silva Ribeiro, J. E., Nóbrega, J., and Gonçalves, A. (2023). Ecophysiology and growth of basil (Ocimum basilicum) under saline stress and salicylic acid. Acta Biologica Colombiana, 28(1). https://doi.org/10.15446/abc.v28n1.97151
Singh, B., Camps‐Arbestain, M. and Lehmann, J. (eds). (2017). Biochar: A guide to analytical methods. CRC Press, Boca Raton, FL, USA, 310 pages. ISBN: 149876553X, 9781498765534
Sparks, R.L. (1996). Methods for Soil Analysis, Part 3: Chemical methods, Soil Science Society of America, Madison 435-417.
Teiymouri, A., Amirinejad, A., and Ghobadi, M. (2021). The effects of biochar and salicylic acid on alleviation of Pb stress in salvia (
Salvia afficinalis L.).
Journal of Soil and Plant Interactions, 12(1), 95-108.
https://doi.org/10.47176/jspi.12.1.20161. (
In Persian).
Vikram, N., Sagar, A. and Husain, R. (2022).
Properties of humic acid substances and their effect in soil quality and plant health. In: Makan, A., Ed., Humus and Humic Substances, Recent Advances, IntechOpen, London.
https://doi.org/10.5772/intechopen.105803
Wang, Z., Shen, D., Wu, C., and Gu, S. (2018). State of the art on the production and application of carbon nanomaterial from biomass.
Green Chemistry, 20, 5031-5057.
https://doi.org/10.1039/c8gc01748d
Yang, C. M., Wang, M. C., Lu, Y. F., Chang, F., and Chou, C. H. (2014). Humic substances affect the activity of chlorophylls.
Journal of Chemical Ecology, 30, 1065-1057.
https://doi.org/10.1023/ JOEC.82191.
Zewd I, and Siban M. (2021). The effects of alkalinity on physical and chemical properties of soil. Journal of Plant Biology and Agriculture Science;3(2):1-5. https://doi.org/10.36266/GJAST/141
Zhang, P., Yang, F., Zhang, H., Liu, L., Liu, X., Chen, J., Wang, X., Wang, Y., and Li, C. (2020). Beneficial effects of biochar-based organic fertilizer on nitrogen assimilation, antioxidant capacities, and photosynthesis of sugar beet (
Beta vulgaris L.) under saline-alkaline stress.
Agronomy, 10, 1562.
https://doi.org/10.3390/agronomy10101562.